Tidal Modeling of an Ancient Tide-Dominated Seaway, Part 1: Model Validation and Application to Global Early Cretaceous (Aptian) Tides

Abstract The utility of deep-time global paleotidal modeling is evaluated with a series of modeling experiments focused on the Early Cretaceous (Aptian). The results from a series of paleobathymetry sensitivity experiments indicate that, despite paleogeographic and paleobathymetric uncertainty, appropriate use of global paleotidal models complements and enhances stratigraphic and sedimentological methods. Before being applied to global paleotidal modeling, the Imperial College Ocean Model (ICOM) is validated for the computation of modern global tides. The ICOM results only deviate slightly from a “state-of-the-art” published model and were achieved with considerably less computational expense and without data assimilation. The results from global paleotidal modeling of the Early Cretaceous (Aptian) were assessed by comparison with the published geological record. ICOM predicts high mesotidal to macrotidal ranges on the Arabian Platform, around India (especially to the north and west), along the Pacific coast between North and South America, northeast of Australia, and around Southeast Asia. The model predicts low microtidal ranges in the proto-South Atlantic Ocean and Weddell Sea. A further validation test assessed the ability of the model to predict the dominant tidal constituents (diurnal or semidiurnal) in the Aptian “Lower Greensand Seaway” of southeastern England and Northern France. During the Aptian this region was connected to the Boreal, Proto-Atlantic, and Neotethys oceans and now preserves superbly documented tidal deposits. The model predicts low microtidal ranges in the proto-Central Atlantic Ocean and Boreal Ocean, suggesting that they had little impact on tides in the Lower Greensand Seaway. Higher tidal amplitudes, especially of diurnal (once-daily) tides, are predicted in the northwestern Neotethys Ocean, suggesting that this ocean was an important source of tidal energy to the Lower Greensand Seaway. Sensitivity tests to paleogeographic and paleobathymetric uncertainty indicate that the model predictions are robust. The prediction of predominantly diurnal tides is supported by published analyses of large dune-scale deposits in the Lower Greensand of southeast England.

[1]  M. Piggott,et al.  Tidal Modeling of an Ancient Tide-Dominated Seaway, Part 2: The Aptian Lower Greensand Seaway of Northwest Europe , 2010 .

[2]  Christopher C. Pain,et al.  Modelling tidal current‐induced bed shear stress and palaeocirculation in an epicontinental seaway: the Bohemian Cretaceous Basin, Central Europe , 2010 .

[3]  W. E. Galloway,et al.  Reply to the comments of W. Helland-Hansen on "Towards the standardization of sequence stratigraphy" by Catuneanu et al. (Earth-Sciences Review 92(2009)1-33) , 2009 .

[4]  Christopher C. Pain,et al.  A systematic approach to unstructured mesh generation for ocean modelling using GMT and Terreno , 2008, Comput. Geosci..

[5]  Christopher C. Pain,et al.  A new computational framework for multi‐scale ocean modelling based on adapting unstructured meshes , 2008 .

[6]  Henk A. Dijkstra,et al.  Climate model boundary conditions for four Cretaceous time slices , 2007 .

[7]  Christopher C. Pain,et al.  Numerical Modeling of Tides in the Late Pennsylvanian Midcontinent Seaway of North America with Implications for Hydrography and Sedimentation , 2007 .

[8]  R. Müller,et al.  Breakup and early seafloor spreading between India and Antarctica , 2007 .

[9]  T. Kusky,et al.  The Great Rift Valley of Madagascar: An extension of the Africa–Somali diffusive plate boundary? , 2007 .

[10]  R. Arnott,et al.  Facies Distribution and Stratigraphic Architecture of the Lower Cretaceous McMurray Formation, Lewis Property, Northeastern Alberta , 2007 .

[11]  S. Peters The problem with the Paleozoic , 2007, Paleobiology.

[12]  Christopher C. Pain,et al.  Shoreline approximation for unstructured mesh generation , 2007, Comput. Geosci..

[13]  Jiabiao Li,et al.  Structures of the northeasternmost South China Sea continental margin and ocean basin: geophysical constraints and tectonic implications , 2007 .

[14]  P. Allison,et al.  CIRCULATION IN LARGE ANCIENT EPICONTINENTAL SEAS: WHAT WAS DIFFERENT AND WHY? , 2006 .

[15]  D. Altıner,et al.  Cyclic palaeokarst surfaces in Aptian peritidal carbonate successions (Taurides, southwest Turkey): internal structure and response to mid-Aptian sea-level fall , 2006 .

[16]  G. Seeber,et al.  Accuracy assessment of ocean tide loading computations for precise geodetic observations , 2006 .

[17]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[18]  S. Cloetingh,et al.  Mesozoic transtensional basin history of the Eastern Cordillera, Colombian Andes: Inferences from tectonic models , 2006 .

[19]  M. Bachmann,et al.  Lower Cretaceous carbonate platform of the eastern Levant (Galilee and the Golan Heights): stratigraphy and second-order sea-level change , 2006 .

[20]  P. DeCelles,et al.  Regional structure and kinematic history of the Sevier fold-and-thrust belt, central Utah , 2006 .

[21]  N. F. Tikhonova,et al.  Late Cretaceous-Eocene marginal seas in the Black Sea-Caspian region: Paleotectonic reconstructions , 2006 .

[22]  H. Ueda,et al.  Tectonic accretion of a subducted intraoceanic remnant arc in Cretaceous Hokkaido, Japan, and implications for evolution of the Pacific northwest , 2005 .

[23]  Rajat Mazumder Reply to the comment of G. Williams on “Tidal rhythmites and their implications” by R. Mazumder and M. Arima [Earth-Science Reviews 69 (2005), 79–95] , 2005 .

[24]  G. Williams Comment on “Tidal rhythmites and their implications” by R. Mazumder and M. Arima [Earth-Science Reviews, 69 (2005) 79–95] , 2005 .

[25]  R. Duncan,et al.  Cretaceous alkaline intra-plate magmatism in the Ecuadorian Oriente Basin: Geochemical, geochronological and tectonic evidence , 2005 .

[26]  P. Allison,et al.  Switching off the carbonate factory: A-tidality, stratification and brackish wedges in epeiric seas , 2005 .

[27]  Christopher C. Pain,et al.  Modelling ancient tides: the Upper Carboniferous epi‐continental seaway of Northwest Europe , 2005 .

[28]  I. Velić,et al.  Evolution of the Adriatic Carbonate Platform: Palaeogeography, main events and depositional dynamics , 2005 .

[29]  M. Piggott,et al.  Large sea, small tides: the Late Carboniferous seaway of NW Europe , 2005, Journal of the Geological Society.

[30]  L. Jolivet,et al.  Convergence history across Zagros (Iran): constraints from collisional and earlier deformation , 2005 .

[31]  John F. Casey,et al.  Gulf of Mexico tectonic history: Hotspot tracks, crustal boundaries, and early salt distribution , 2005 .

[32]  Rajat Mazumder,et al.  Tidal rhythmites and their implications , 2005 .

[33]  M. Piggott,et al.  A Nonhydrostatic Finite-Element Model for Three-Dimensional Stratified Oceanic Flows. Part II: Model Validation , 2004 .

[34]  Shaofeng Liu,et al.  Late Cretaceous subsidence in Wyoming: Quantifying the dynamic component , 2004 .

[35]  S. Schmid,et al.  Tectonic map and overall architecture of the Alpine orogen , 2004 .

[36]  W. Dickinson EVOLUTION OF THE NORTH AMERICAN CORDILLERA , 2004 .

[37]  J. Golonka Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic , 2004 .

[38]  Gary D. Egbert,et al.  Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum , 2004 .

[39]  P. DeCelles Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system , 2004 .

[40]  M. Wit MADAGASCAR: Heads It's a Continent, Tails It's an Island , 2003 .

[41]  W. Jokat,et al.  Timing and geometry of early Gondwana breakup , 2003 .

[42]  B. Pittet,et al.  The Barremian-Aptian Evolution of The Eastern Arabian Carbonate Platform Margin (Northern Oman) , 2003 .

[43]  A. Alekseev,et al.  Cretaceous palaeogeography of the North-Eastern Peri-Tethys , 2003 .

[44]  A. Poisson,et al.  Developments in research concerning Mesozoic–Tertiary Tethys and neotectonics in the Isparta Angle, SW Turkey , 2003 .

[45]  D. Leckie,et al.  Tide-influenced sedimentation in a rift basin—Cretaceous Qishn Formation, Masila Block, Yemen: A billion barrel oil field , 2003 .

[46]  I. D. Carr A SEQUENCE STRATIGRAPHIC SYNTHESIS OF THE NORTH AFRICAN MESOZOIC , 2003 .

[47]  I. Dalziel,et al.  Mesozoic break-up of SW Gondwana: implications for regional hydrocarbon potential of the southern South Atlantic , 2003 .

[48]  C. Provost,et al.  FES99: A Global Tide Finite Element Solution Assimilating Tide Gauge and Altimetric Information , 2002 .

[49]  B. Pittet,et al.  Ecological succession, palaeoenvironmental change, and depositional sequences of Barremian–Aptian shallow‐water carbonates in northern Oman , 2002 .

[50]  G. Stampfli,et al.  A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons , 2002 .

[51]  G. Shanmugam,et al.  Tide-Dominated Estuarine Facies in the Hollin and Napo ("T" and "U") Formations (Cretaceous), Sacha Field, Oriente Basin, Ecuador , 2002 .

[52]  G. Egbert,et al.  Efficient Inverse Modeling of Barotropic Ocean Tides , 2002 .

[53]  M. Wagreich A 400‐km‐long piggyback basin (Upper Aptian–Lower Cenomanian) in the Eastern Alps , 2001 .

[54]  Gary D. Egbert,et al.  Estimates of M2 Tidal Energy Dissipation from TOPEX/Poseidon Altimeter Data , 2001 .

[55]  A. Martín,et al.  Late Permian to Holocene Paleofacies Evolution of the Arabian Plate and its Hydrocarbon Occurrences , 2001, GeoArabia.

[56]  C.R.E. de Oliveira,et al.  Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .

[57]  E. H. Chellai,et al.  Facies and sequence stratigraphy of an estuarine incised-valley fill: Lower Aptian Bouzergoun Formation, Agadir Basin, Morocco , 2001 .

[58]  M. Ooe,et al.  Ocean Tide Models Developed by Assimilating TOPEX/POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model around Japan , 2000 .

[59]  G. D. Egbert,et al.  Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data , 2000, Nature.

[60]  I. Montañez,et al.  Sequence Stratigraphy of Lower Cretaceous (Barremian-Albian) Carbonate Platforms of Northeastern Mexico: Regional and Global Correlations , 2000 .

[61]  R. Graziano The Aptian–Albian of the Apulia Carbonate Platform (Gargano Promontory, southern Italy): evidence of palaeoceanographic and tectonic controls on the stratigraphic architecture of the platform margin , 2000 .

[62]  C. Sonett,et al.  Calculating lunar retreat rates using tidal rhythmites , 1999 .

[63]  Richard D. Ray,et al.  A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2 , 1999 .

[64]  R. Gaupp,et al.  Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: constraints from framework petrography, heavy mineral analysis and mineral chemistry , 1999 .

[65]  R. Schlische,et al.  Diachronous Rifting, Drifting, and Inversion on the Passive Margin of Central Eastern North America: An Analog for Other Passive Margins , 1998 .

[66]  F. Berra,et al.  The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous (South Tibet) , 1998 .

[67]  C. Provost,et al.  A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-derived data set , 1998 .

[68]  M. Gurnis,et al.  Cretaceous vertical motion of australia and the australian- antarctic discordance , 1998, Science.

[69]  C. Sonett,et al.  Neoproterozoic Earth‐Moon dynamics: Rework of the 900 Ma Big Cottonwood Canyon tidal laminae , 1998 .

[70]  M. E. Parke,et al.  Accuracy assessment of recent ocean tide models , 1997 .

[71]  X. Wang,et al.  Did the Indo-Asian collision alone create the Tibetan plateau? , 1997 .

[72]  George E. Williams,et al.  Precambrian length of day and the validity of tidal rhythmite paleotidal values , 1997 .

[73]  C. Sonett,et al.  Late Proterozoic and Paleozoic Tides, Retreat of the Moon, and Rotation of the Earth , 1996, Science.

[74]  Gurvan Madec,et al.  A global ocean mesh to overcome the North Pole singularity , 1996 .

[75]  Walter H. F. Smith,et al.  A global, self‐consistent, hierarchical, high‐resolution shoreline database , 1996 .

[76]  M. Ooe,et al.  Ocean tide model obtained from TOPEX/POSEIDON altimetry data , 1995 .

[77]  H. R. Johnson,et al.  Analysis of modern tides and implications for ancient tidalites , 1995 .

[78]  A. Bennett,et al.  TOPEX/POSEIDON tides estimated using a global inverse model , 1994 .

[79]  C. Provost,et al.  Spectroscopy of the world ocean tides from a finite element hydrodynamic model , 1994 .

[80]  P. Wycisk Correlation of the major late Jurassic —early Tertiary low- and highstand cycles of south-west Egypt and north-west Sudan , 1994 .

[81]  P. Allen,et al.  Use of tidal-circulation modeling in paleogeographical studies: An example from the Tertiary of the Alpine perimeter , 1994 .

[82]  M. Okamura,et al.  Plumes in central Panthalassa? Deductions from accreted oceanic fragments in Japan , 1994 .

[83]  J. V. Lalaharisaina,et al.  Cretaceous may hold promise in Majunga basin, Madagascar , 1994 .

[84]  J. Williams,et al.  Lunar Laser Ranging: A Continuing Legacy of the Apollo Program , 1994, Science.

[85]  M. Gurnis,et al.  The planform of epeirogeny: vertical motions of Australia during the Cretaceous , 1994 .

[86]  A. Mitchell Cretaceous–Cenozoic tectonic events in the western Myanmar (Burma)–Assam region , 1993, Journal of the Geological Society.

[87]  M. Zoback,et al.  The Cordilleran Orogen: Conterminous U.S. , 1993 .

[88]  J. Dickey,et al.  Earth's Variable Rotation , 1991, Science.

[89]  Rudy Slingerland,et al.  Numerical simulations of tidal and wind-driven circulation in the Cretaceous Interior Seaway of North America , 1990 .

[90]  J. Soták,et al.  Lower Cretaceous shallow marine buildups in the Western Carpathians and their relationship to pelagic facies , 1990 .

[91]  F. Schlagintweit Allochthonous Urgonian limestones of the Northern Calcareous Alps: facies and palaeogeographic framework within the Alpine orogeny , 1990 .

[92]  Richard D. Ray,et al.  Oceanic tides from Geosat altimetry , 1990 .

[93]  G. Chronis,et al.  Modern fan deltas in the western Gulf of Corinth, Greece , 1990 .

[94]  L. Zonenshain,et al.  Plate tectonics and palinspastic reconstructions of the Anadyr‐Koryak Region, northeast USSR , 1990 .

[95]  C. Powell,et al.  Pre-breakup continental extension in East Gondwanaland and the early opening of the eastern Indian Ocean , 1988 .

[96]  Derald G. Smith,et al.  Tidal bundles and mud couplets in the McMurray Formation, northeastern Alberta, Canada , 1988 .

[97]  B. Kirkland,et al.  Lower Cretaceous Barrier Reef and Outer Shelf Facies, Sligo Formation, South Texas , 1987 .

[98]  Rudy Slingerland Numerical computation of co‐oscillating palaeotides in the Catskill epeiric Sea of eastern North America , 1986 .

[99]  P. Flach,et al.  Depositional Environments of Lower Cretaceous McMurray Formation, Athabasca Oil Sands, Alberta , 1985 .

[100]  R. Slater A Numerical Model of Tides in the Cretaceous Seaway of North America , 1985, The Journal of Geology.

[101]  B. Tucholke,et al.  Structure and origin of the J Anomaly Ridge, western North Atlantic Ocean , 1982 .

[102]  J. Allen,et al.  Mud drapes in sand-wave deposits: a physical model with application to the Folkestone beds (early cretaceous, southeast England) , 1982, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[103]  K. S. Hansen Secular effects of oceanic tidal dissipation on the Moon's orbit and the Earth's rotation , 1982 .

[104]  E. W. Schwiderski,et al.  On charting global ocean tides , 1980 .

[105]  W. Frisch Tectonic progradation and plate tectonic evolution of the Alps , 1979 .

[106]  T. A. Ryer,et al.  Tidal circulation patterns in Precambrian, Paleozoic, and Cretaceous epeiric and mioclinal shelf seas , 1978 .

[107]  D. James Plate Tectonic Model for the Evolution of the Central Andes , 1971 .

[108]  A. Shaw Time in stratigraphy , 1965 .

[109]  W. C. Krumbein,et al.  Stable configuration of bottom slope in a shallow sea and its bearing on geological processes , 1949 .

[110]  C.R.E. de Oliveira,et al.  Optimisation based bathymetry approximation through constrained unstructured mesh adaptivity , 2006 .

[111]  K. Burke,et al.  Pangea Breakup: Mexico, Gulf of Mexico, And Central Atlantic Ocean , 2006 .

[112]  I. Metcalfe Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: The Korean Peninsula in context , 2006 .

[113]  T. Puckett,et al.  Jurassic and Cretaceous transgressive-regressive (T-R) cycles, Northern Gulf of Mexico, USA , 2005, Stratigraphy.

[114]  C.R.E. de Oliveira,et al.  Three-dimensional unstructured mesh ocean modelling , 2005 .

[115]  C. C. Pain,et al.  h, r, and hr adaptivity with applications in numerical ocean modelling , 2005 .

[116]  L. Kantha,et al.  Numerical models of oceans and oceanic processes , 2000 .

[117]  M. Wagreich,et al.  Late Jurassic to Eocene Palaeogeography and Geodynamic Evolution of the Eastern Alps , 2000 .

[118]  A. Robertson Mesozoic-Tertiary tectonic evolution of the easternmost Mediterranean area: integration of marine and land evidence. , 1998 .

[119]  Alistair Adcroft,et al.  How slippery are piecewise‐constant coastlines in numerical ocean models? , 1998 .

[120]  P. Allison,et al.  Paleolatitudinal sampling bias, Phanerozoic species diversity, and the end-Permian extinction , 1993 .

[121]  Elazar Uchupi,et al.  Annual Review of Earth and Planetary Sciences: Volume 19 (1991), 484p. US $60.00 and Volume 20 (1992), 631 p. US $64.00 , 1993 .

[122]  K. Burke Tectonic Evolution of the Caribbean , 1988 .

[123]  A. H. Stride Ancient offshore tidal deposits , 1982 .

[124]  D. Webb On the Reduction in Tidal Dissipation Produced by Increases in the Earth’s Rotation Rate and Its Effect on the Long-Term History of the Moon’s Orbit , 1982 .

[125]  A. Hallam Facies interpretation and the stratigraphic record , 1981 .

[126]  P. A. Ziegler,et al.  Geological atlas of Western and Central Europe , 1969 .

[127]  M. Schwarzbach Climates of the past , 1963 .