Global solutions to the supercooled Stefan problem with blow-ups: regularity and uniqueness

We consider the supercooled Stefan problem, which captures the freezing of a supercooled liquid, in one space dimension. A probabilistic reformulation of the problem allows to define global solutions, even in the presence of blow-ups of the freezing rate. We provide a complete description of such solutions, by relating the temperature distribution in the liquid to the regularity of the ice growth process. The latter is shown to transition between (i) continuous differentiability, (ii) Holder continuity, and (iii) discontinuity. In particular, in the second regime we rediscover the square root behavior of the growth process pointed out by Stefan in his seminal paper [Ste89] from 1889 for the ordinary Stefan problem. In our second main theorem, we establish the uniqueness of the global solutions, a first result of this kind in the context of growth processes with singular self-excitation when blow-ups are present.

[1]  Maria E. Schonbek,et al.  Classical Solutions for a Nonlinear Fokker-Planck Equation Arising in Computational Neuroscience , 2011, 1109.1298.

[2]  Christoph Reisinger,et al.  Simulation of particle systems interacting through hitting times , 2018, 1805.11678.

[3]  F. Delarue,et al.  Particle systems with a singular mean-field self-excitation. Application to neuronal networks , 2014, 1406.1151.

[4]  Augusto Visintin Stefan problem with a kinetic condition at the free boundary , 1986 .

[5]  Mykhaylo Shkolnikov,et al.  Mean field systems on networks, with singular interaction through hitting times , 2018, The Annals of Probability.

[6]  Avner Friedman,et al.  The ill-posed Hele-Shaw model and the Stefan problem for supercooled water , 1984 .

[7]  A. Dembo,et al.  Criticality of a Randomly-Driven Front , 2017, Archive for Rational Mechanics and Analysis.

[8]  R. Cooke Real and Complex Analysis , 2011 .

[9]  Sylvain Rubenthaler,et al.  First hitting times for general non-homogeneous 1d diffusion processes: density estimates in small time , 2013 .

[10]  A. M. Meirmanov,et al.  The Stefan Problem , 1992 .

[11]  Xie Weiqing,et al.  The Stefan problem with kinetic condition at the free boundary , 1990 .

[12]  Sam Howison,et al.  Asymptotic behavior of solutions to the Stefan problem with a kinetic condition at the free boundary , 1989, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[13]  Antonio Fasano,et al.  On the Singularities of One-Dimensional Stefan Problems with Supercooling , 1989 .

[14]  J. Stefan Über die Theorie der Eisbildung , 1890 .

[15]  John Sylvester,et al.  The heat equation and reflected Brownian motion in time-dependent domains , 2004 .

[16]  Andreas Søjmark,et al.  Uniqueness for contagious McKean–Vlasov systems in the weak feedback regime , 2018, Bulletin of the London Mathematical Society.

[17]  J. Stefan,et al.  Ueber die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere , 1891 .

[18]  G. Komatsu Analyticity up to the boundary of solutions of nonlinear parabolic equations , 1979 .

[19]  J. Hale,et al.  Methods of Bifurcation Theory , 1996 .

[20]  B. Sherman A general one-phase Stefan problem , 1970 .

[21]  Nicolas Brunel,et al.  Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities , 2009, Journal of Computational Neuroscience.

[22]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[23]  Sam Howison,et al.  Singularity development in moving-boundary problems , 1985 .

[24]  José A. Carrillo,et al.  Qualitative properties of solutions for the noisy integrate and fire model in computational neuroscience , 2015 .

[25]  C. Reisinger,et al.  Semi-analytical solution of a McKean–Vlasov equation with feedback through hitting a boundary , 2018, European Journal of Applied Mathematics.

[26]  J. Sylvester,et al.  The heat equation and reflected Brownian motion in time-dependent domains. , 2003 .

[27]  A. Fasano,et al.  New results on some classical parabolic free-boundary problems , 1981 .

[28]  Mykhaylo Shkolnikov,et al.  Particle systems with singular interaction through hitting times: Application in systemic risk modeling , 2017, The Annals of Applied Probability.

[29]  Sean Ledger,et al.  At the mercy of the common noise: blow-ups in a conditional McKean–Vlasov Problem , 2018, Electronic Journal of Probability.

[30]  B. Fiedler,et al.  The dynamics of rotating waves in scalar reaction diffusion equations , 1988 .

[31]  María J. Cáceres,et al.  Analysis of nonlinear noisy integrate & fire neuron models: blow-up and steady states , 2010, Journal of mathematical neuroscience.

[32]  N. Krylov,et al.  Lectures on Elliptic and Parabolic Equations in Holder Spaces , 1996 .

[33]  J. Stefan,et al.  Ueber die Verdampfung und die Auflösung als Vorgänge der Diffusion , 1890 .

[34]  Antonio Fasano,et al.  Some remarks on the regularization of supercooled one-phase Stefan problems in one dimension , 1990 .

[35]  John Rinzel,et al.  Dynamics of Spiking Neurons Connected by Both Inhibitory and Electrical Coupling , 2003, Journal of Computational Neuroscience.

[36]  École d'été de probabilités de Saint-Flour,et al.  Ecole d'été de probabilités de Saint-Flour XIX, 1989 , 1991 .

[37]  Antonio Fasano,et al.  A critical case for the solvability of stefan‐like problems , 1983 .

[38]  Marcos Antón Amayuelas The Stefan problem , 2015 .

[39]  Marcel Brillouin Sur quelques problèmes non résolus de la Physique Mathématique classique Propagation de la fusion , 1930 .

[40]  F. Delarue,et al.  Global solvability of a networked integrate-and-fire model of McKean–Vlasov type , 2012, 1211.0299.

[41]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .

[42]  B. Hambly,et al.  A McKean–Vlasov equation with positive feedback and blow-ups , 2018, The Annals of Applied Probability.

[43]  Sam Howison,et al.  Kinetic Undercooling Regularization of Supercooled Stefan Problems , 1989 .

[44]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .