Substantial lifetime enhancement for Si-based photoanodes enabled by amorphous TiO2 coating with improved stoichiometry

[1]  Jihun Oh,et al.  Nanopixelated Cuprous Oxide Photocathodes for Durable Photoelectrochemical Water Splitting , 2022, ACS Energy Letters.

[2]  Yunzhi Wang,et al.  Medium-range ordering, structural heterogeneity, and their influence on properties of Zr-Cu-Co-Al metallic glasses , 2021, Physical Review Materials.

[3]  E. Guziewicz,et al.  Structural Properties of Thin ZnO Films Deposited by ALD under O-Rich and Zn-Rich Growth Conditions and Their Relationship with Electrical Parameters , 2021, Materials.

[4]  N. Lewis,et al.  Defect-Tolerant TiO2-Coated and Discretized Photoanodes for >600 h of Stable Photoelectrochemical Water Oxidation , 2020, ACS Energy Letters.

[5]  Kimberly M. Papadantonakis,et al.  Enhanced stability of silicon for photoelectrochemical water oxidation through self-healing enabled by an alkaline protective electrolyte , 2020 .

[6]  J. Gong,et al.  Metal Sputtering Buffer Layer for High Performance Si-Based Water Oxidation Photoanode , 2020 .

[7]  J. Čejka,et al.  Zeolite (In)Stability under Aqueous or Steaming Conditions , 2020, Advanced materials.

[8]  J. Kools,et al.  Quantifying the Extent of Ligand Incorporation and the Effect on Properties of TiO2 Thin Films Grown by Atomic Layer Deposition Using an Alkoxide or an Alkylamide , 2020, Chemistry of Materials.

[9]  B. Liu,et al.  Multifunctional Nickel Film Protected n‐Type Silicon Photoanode with High Photovoltage for Efficient and Stable Oxygen Evolution Reaction , 2019, Small Methods.

[10]  T. Andreu,et al.  Insight into the degradation mechanisms of Atomic Layer Deposited TiO2 as photoanode protective layer. , 2019, ACS applied materials & interfaces.

[11]  Brandon D. Piercy,et al.  Characterization of Electronic Transport through Amorphous TiO2 Produced by Atomic Layer Deposition , 2019, The Journal of Physical Chemistry C.

[12]  Jared M. Johnson,et al.  Direct determination of structural heterogeneity in metallic glasses using four-dimensional scanning transmission electron microscopy. , 2018, Ultramicroscopy.

[13]  Robert H. Coridan,et al.  Enhanced Electrochemical Stability of TiO2-Protected, Al-doped ZnO Transparent Conducting Oxide Synthesized by Atomic Layer Deposition. , 2018, ACS applied materials & interfaces.

[14]  M. Ritala,et al.  Atomic layer deposition of crystalline molybdenum oxide thin films and phase control by post-deposition annealing , 2018, Materials Today Chemistry.

[15]  Qian Cai,et al.  Insulator Layer Engineering toward Stable Si Photoanode for Efficient Water Oxidation , 2018, ACS Catalysis.

[16]  S. Linic,et al.  Maximizing Solar Water Splitting Performance by Nanoscopic Control of the Charge Carrier Fluxes across Semiconductor–Electrocatalyst Junctions , 2018, ACS Catalysis.

[17]  Xudong Wang,et al.  Metastable Intermediates in Amorphous Titanium Oxide: A Hidden Role Leading to Ultra-Stable Photoanode Protection. , 2018, Nano letters.

[18]  N. Lewis,et al.  Tin Oxide as a Protective Heterojunction with Silicon for Efficient Photoelectrochemical Water Oxidation in Strongly Acidic or Alkaline Electrolytes , 2018, Advanced Energy Materials.

[19]  J. Cha,et al.  Stable Water Oxidation in Acid Using Manganese-Modified TiO2 Protective Coatings. , 2018, ACS applied materials & interfaces.

[20]  P. Poodt,et al.  Chlorine Doping of Amorphous TiO2 for Increased Capacity and Faster Li+-Ion Storage , 2017 .

[21]  Wilson A. Smith,et al.  Interfacial engineering of metal-insulator-semiconductor junctions for efficient and stable photoelectrochemical water oxidation , 2017, Nature Communications.

[22]  R. Peter,et al.  Residual chlorine in TiO2 films grown at low temperatures by plasma enhanced atomic layer deposition , 2017 .

[23]  Qingliang Liao,et al.  Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode , 2017, Nature Energy.

[24]  S. Haussener,et al.  Degradation in photoelectrochemical devices: review with an illustrative case study , 2017 .

[25]  D. Schmeißer,et al.  Engineering of Sub-Nanometer SiOx Thickness in Si Photocathodes for Optimized Open Circuit Potential. , 2016, ChemSusChem.

[26]  H. Maciel,et al.  Relationships among growth mechanism, structure and morphology of PEALD TiO2 films: the influence of O2 plasma power, precursor chemistry and plasma exposure mode , 2016, Nanotechnology.

[27]  Kimberly M. Papadantonakis,et al.  570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition , 2016 .

[28]  Nathan S Lewis,et al.  Research opportunities to advance solar energy utilization , 2016, Science.

[29]  Kimberly M. Papadantonakis,et al.  Stable solar-driven oxidation of water by semiconducting photoanodes protected by transparent catalytic nickel oxide films , 2015, Proceedings of the National Academy of Sciences.

[30]  M. Ritala,et al.  Interface control of atomic layer deposited oxide coatings by filtered cathodic arc deposited sublayers for improved corrosion protection , 2014 .

[31]  Rui Liu,et al.  Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers , 2014 .

[32]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.

[33]  L. Kavan,et al.  Electrochemical Characterization of TiO2 Blocking Layers for Dye-Sensitized Solar Cells , 2014 .

[34]  Jian Shi,et al.  Electron microscopy observation of TiO2 nanocrystal evolution in high-temperature atomic layer deposition. , 2013, Nano letters.

[35]  M. Ritala,et al.  AlxTayOz mixture coatings prepared using atomic layer deposition for corrosion protection of steel , 2013 .

[36]  M. Verheijen,et al.  Influence of Oxygen Exposure on the Nucleation of Platinum Atomic Layer Deposition: Consequences for Film Growth, Nanopatterning, and Nanoparticle Synthesis , 2013 .

[37]  M. Kramer,et al.  Nanoscale structure and structural relaxation in Zr50Cu45Al5 bulk metallic glass. , 2012, Physical review letters.

[38]  Lin-Wang Wang,et al.  Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution , 2012, 1203.1970.

[39]  Yohan Park,et al.  Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. , 2011, Nature materials.

[40]  C. Wolden,et al.  Plasma-Enhanced Atomic Layer Deposition of Anatase TiO2 Using TiCl4 , 2009 .

[41]  Clifford L. Henderson,et al.  Area selective atomic layer deposition of titanium dioxide : Effect of precursor chemistry , 2006 .

[42]  B. E. White,et al.  Impact of Deposition and Annealing Temperature on Material and Electrical Characteristics of ALD HfO2 , 2004 .

[43]  Jaan Aarik,et al.  Anomalous effect of temperature on atomic layer deposition of titanium dioxide , 2000 .

[44]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[45]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[46]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[47]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[48]  Johannes G.E. Gardeniers,et al.  Surface Morphology of p‐Type (100) Silicon Etched in Aqueous Alkaline Solution , 1996 .

[49]  A. Lasaga,et al.  Theoretical reaction pathways for the formation of [Si(OH)5]1− and the deprotonation of orthosilicic acid in basic solution , 1993 .

[50]  V. Anisimov,et al.  Band theory and Mott insulators: Hubbard U instead of Stoner I. , 1991, Physical review. B, Condensed matter.

[51]  Masanori Matsui,et al.  Molecular Dynamics Simulation of the Structural and Physical Properties of the Four Polymorphs of TiO2 , 1991 .

[52]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[53]  N. Lewis,et al.  Catalytic Open-circuit Passivation by Thin Metal Oxide Films of p-Si Anodes in Aqueous Alkaline Electrolytes , 2021, Energy & Environmental Science.

[54]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.