Iron–sulfur clusters have no right angles

A set of restraints for an iron–sulfur cluster based on small-molecule structures was generated and tested in structure refinement. Additionally, the small-molecule structures also provided bond and angle restraints for linking the cluster to the coordinating cysteine residues.

[1]  F. Guerlesquin,et al.  Structure, function and evolution of bacterial ferredoxins. , 1988, FEMS microbiology reviews.

[2]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[3]  Zukang Feng,et al.  The chemical component dictionary: complete descriptions of constituent molecules in experimentally determined 3D macromolecules in the Protein Data Bank , 2015, Bioinform..

[4]  Saulius Gražulis,et al.  AceDRG: a stereochemical description generator for ligands , 2017, Acta crystallographica. Section D, Structural biology.

[5]  K. Miki,et al.  Crystal structures of photosynthetic reaction center and high-potential iron-sulfur protein from Thermochromatium tepidum: thermostability and electron transfer. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Robin Taylor,et al.  New software for searching the Cambridge Structural Database and visualizing crystal structures. , 2002, Acta crystallographica. Section B, Structural science.

[7]  Saulius Gražulis,et al.  Validation and extraction of molecular-geometry information from small-molecule databases , 2017, Acta crystallographica. Section D, Structural biology.

[8]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[9]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[10]  P. Amara,et al.  The crystal structure of Fe₄S₄ quinolinate synthase unravels an enzymatic dehydration mechanism that uses tyrosine and a hydrolase-type triad. , 2014, Journal of the American Chemical Society.

[11]  K. Miki,et al.  Ultrahigh-resolution structure of high-potential iron-sulfur protein from Thermochromatium tepidum. , 2002, Acta crystallographica. Section D, Biological crystallography.

[12]  Robin Taylor,et al.  Mercury: visualization and analysis of crystal structures , 2006 .

[13]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[14]  Fei Long,et al.  REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. , 2004, Acta crystallographica. Section D, Biological crystallography.

[15]  C. Macrae,et al.  Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures , 2008 .

[16]  Saulius Gražulis,et al.  Crystallography Open Database – an open-access collection of crystal structures , 2009, Journal of applied crystallography.

[17]  Paul D. Adams,et al.  An editor for the generation and customization of geometry restraints , 2017, Acta crystallographica. Section D, Structural biology.

[18]  Paul D Adams,et al.  Electronic Reprint Biological Crystallography Electronic Ligand Builder and Optimization Workbench (elbow ): a Tool for Ligand Coordinate and Restraint Generation Biological Crystallography Electronic Ligand Builder and Optimization Workbench (elbow): a Tool for Ligand Coordinate and Restraint Gener , 2022 .

[19]  I. Bruno,et al.  Cambridge Structural Database , 2002 .

[20]  R. H. Holm,et al.  Structural Analysis of Cubane-Type Iron Clusters. , 2013, Polyhedron.