An alternating preconditioner for saddle point problems

Based on matrix splittings, a new alternating preconditioner with two parameters is proposed for solving saddle point problems. Some theoretical analyses for the eigenvalues of the associated preconditioned matrix are given. The choice of the parameters is considered and the quasi-optimal parameters are obtained. The new preconditioner with these quasi-optimal parameters significantly improves the convergence rate of the generalized minimal residual (GMRES) iteration. Numerical experiments from the linearized Navier-Stokes equations demonstrate the efficiency of the new preconditioner, especially on the larger viscosity parameter @n. Further extensions of the preconditioner to generalized saddle point matrices are also checked.

[1]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[2]  Zeng-Qi Wang,et al.  Optimization of the parameterized Uzawa preconditioners for saddle point matrices , 2009 .

[3]  Michael K. Ng,et al.  On Inexact Preconditioners for Nonsymmetric Matrices , 2005, SIAM J. Sci. Comput..

[4]  Eric de Sturler,et al.  Preconditioners for Generalized Saddle-Point Problems , 2006, SIAM J. Numer. Anal..

[5]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[6]  Howard C. Elman,et al.  Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.

[7]  H. Sue Dollar,et al.  Constraint-Style Preconditioners for Regularized Saddle Point Problems , 2007, SIAM J. Matrix Anal. Appl..

[8]  Gene H. Golub,et al.  A Preconditioner for Generalized Saddle Point Problems , 2004, SIAM J. Matrix Anal. Appl..

[9]  Michael K. Ng,et al.  New preconditioners for saddle point problems , 2006, Appl. Math. Comput..

[10]  Michael K. Ng,et al.  Constraint Preconditioners for Symmetric Indefinite Matrices , 2009, SIAM J. Matrix Anal. Appl..

[11]  Martin Stoll,et al.  Combination Preconditioning and the Bramble-Pasciak+ Preconditioner , 2008, SIAM J. Matrix Anal. Appl..

[12]  Andrew J. Wathen,et al.  Approximate Factorization Constraint Preconditioners for Saddle-Point Matrices , 2005, SIAM J. Sci. Comput..

[13]  Zhong-Zhi Bai,et al.  Optimal parameters in the HSS‐like methods for saddle‐point problems , 2009, Numer. Linear Algebra Appl..

[14]  Zhong-Zhi Bai,et al.  Structured preconditioners for nonsingular matrices of block two-by-two structures , 2005, Math. Comput..

[15]  Gene H. Golub,et al.  An Algebraic Analysis of a Block Diagonal Preconditioner for Saddle Point Systems , 2005, SIAM J. Matrix Anal. Appl..

[16]  Andrew J. Wathen,et al.  Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.

[17]  Gene H. Golub,et al.  A Class of Nonsymmetric Preconditioners for Saddle Point Problems , 2005, SIAM J. Matrix Anal. Appl..

[18]  Zeng-Qi Wang,et al.  On parameterized inexact Uzawa methods for generalized saddle point problems , 2008 .

[19]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[20]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[21]  Z. Cao Constraint Schur complement preconditioners for nonsymmetric saddle point problems , 2009 .

[22]  Gene H. Golub,et al.  Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[23]  Gene H. Golub,et al.  Block Triangular and Skew-Hermitian Splitting Methods for Positive-Definite Linear Systems , 2005, SIAM J. Sci. Comput..