Coupling of Nanoparticle Dynamics to Polymer Center-of-Mass Motion in Semidilute Polymer Solutions

We investigate the dynamics of nanoparticles in semidilute polymer solutions when the nanoparticles are comparably sized to the polymer coils using explicit- and implicit-solvent simulation methods. The nanoparticle dynamics are subdiffusive on short time scales before transitioning to diffusive motion on long time scales. The long-time diffusivities scale according to theoretical predictions based on full dynamic coupling to the polymer segmental relaxations. In agreement with our recent experiments, however, we observe that the nanoparticle subdiffusive exponents are significantly larger than predicted by the coupling theory over a broad range of polymer concentrations. We attribute this discrepancy in the subdiffusive regime to the presence of an additional coupling mechanism between the nanoparticle dynamics and the polymer center-of-mass motion, which differs from the polymer relaxations that control the long-time diffusion. This coupling is retained even in the absence of many-body hydrodynamic inte...

[1]  A. Malevanets,et al.  Mesoscopic model for solvent dynamics , 1999 .

[2]  Hiroshi Noguchi,et al.  Particle-based mesoscale hydrodynamic techniques , 2006, cond-mat/0610890.

[3]  Kelly M Schultz,et al.  Gelation of Covalently Cross-Linked PEG-Heparin Hydrogels. , 2009, Macromolecules.

[4]  G. Grest,et al.  Particle dynamics modeling methods for colloid suspensions , 2014, CPM 2014.

[5]  Y. Cheng,et al.  Diffusion of Mesoscopic Probes in Aqueous Polymer Solutions Measured by Fluorescence Recovery after Photobleaching , 2002 .

[6]  Sharon C. Glotzer,et al.  Molecular dynamics simulation of a polymer melt with a nanoscopic particle , 2002 .

[7]  P. Mele,et al.  A Molecular dynamics study of a model nanoparticle embedded in a polymer matrix , 2003 .

[8]  Michael P. Howard,et al.  Equilibrium Dynamics and Shear Rheology of Semiflexible Polymers in Solution , 2017 .

[9]  D. Cao,et al.  Molecular Dynamics Study on Nanoparticle Diffusion in Polymer Melts: A Test of the Stokes−Einstein Law , 2008 .

[10]  Gerhard Gompper,et al.  Semidilute Polymer Solutions at Equilibrium and under Shear Flow , 2010, 1103.3573.

[11]  Roland G Winkler,et al.  Bulk viscosity of multiparticle collision dynamics fluids. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Jt Johan Padding,et al.  Zero-shear stress relaxation and long time dynamics of a linear polyethylene melt: A test of Rouse theory , 2001 .

[13]  T. C. B. McLeish,et al.  Polymer Physics , 2009, Encyclopedia of Complexity and Systems Science.

[14]  Nanrong Zhao,et al.  The effect of hydrodynamic interactions on nanoparticle diffusion in polymer solutions: a multiparticle collision dynamics study. , 2017, Soft matter.

[15]  Harold L. Friedman,et al.  Brownian dynamics: Its application to ionic solutions , 1977 .

[16]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[17]  L. Johansson,et al.  Diffusion and interaction in gels and solutions. 6. Charged systems , 1993 .

[18]  Robert I. Cukier,et al.  Diffusion of Brownian spheres in semidilute polymer solutions , 1984 .

[19]  F. Sciortino,et al.  Anomalous dynamics of intruders in a crowded environment of mobile obstacles , 2016, Nature Communications.

[20]  C. Rinaldi,et al.  Breakdown of the Stokes-Einstein Relation for the Rotational Diffusivity of Polymer Grafted Nanoparticles in Polymer Melts. , 2016, Nano letters.

[21]  Mark Sutton,et al.  Entanglement-controlled subdiffusion of nanoparticles within concentrated polymer solutions. , 2012, Physical review letters.

[22]  Ho-Cheol Kim,et al.  Nanoscale effects leading to non-Einstein-like decrease in viscosity , 2003, Nature materials.

[23]  Nathan A. Mahynski,et al.  Flow-induced demixing of polymer-colloid mixtures in microfluidic channels. , 2014, The Journal of chemical physics.

[24]  Gerhard Gompper,et al.  Multiparticle collision dynamics modeling of viscoelastic fluids. , 2008, The Journal of chemical physics.

[25]  V. Ganesan,et al.  Noncontinuum effects on the mobility of nanoparticles in unentangled polymer solutions , 2016 .

[26]  M. Rubinstein,et al.  Mobility of Nonsticky Nanoparticles in Polymer Liquids. , 2011, Macromolecules.

[27]  J. Mano,et al.  Molecular dynamics in polymeric systems , 2004 .

[28]  Todd M. Squires,et al.  Fluid Mechanics of Microrheology , 2010 .

[29]  H. C. Andersen,et al.  Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids , 1971 .

[30]  Biswajit Sarkar,et al.  Block copolymer-nanoparticle composites: Structure, functional properties, and processing , 2015 .

[31]  Grant D. Smith,et al.  On the non-Gaussianity of chain motion in unentangled polymer melts , 2001 .

[32]  Mason,et al.  Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. , 1995, Physical review letters.

[33]  R. Colby Structure and linear viscoelasticity of flexible polymer solutions: comparison of polyelectrolyte and neutral polymer solutions , 2010 .

[34]  M. Weiss,et al.  Anomalous subdiffusion is a measure for cytoplasmic crowding in living cells. , 2004, Biophysical journal.

[35]  G. Gompper,et al.  Mesoscopic solvent simulations: multiparticle-collision dynamics of three-dimensional flows. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  A. Faraone,et al.  Structure and Dynamics of Interacting Nanoparticles in Semidilute Polymer Solutions , 2016 .

[37]  Z. Hou,et al.  Diffusion of Nanoparticles in Semidilute Polymer Solutions: A Multiparticle Collision Dynamics Study , 2016 .

[38]  Kremer,et al.  Molecular dynamics simulation for polymers in the presence of a heat bath. , 1986, Physical review. A, General physics.

[39]  Ronald G. Larson,et al.  How accurate are stochastic rotation dynamics simulations of polymer dynamics , 2013 .

[40]  K. Kremer,et al.  Advanced Computer Simulation Approaches for Soft Matter Sciences III , 2005 .

[41]  A. Aneese,et al.  Diffusion of nanoparticles in semidilute and entangled polymer solutions. , 2009, Journal of Physical Chemistry B.

[42]  A. Dobrynin,et al.  Theory of polyelectrolytes in solutions and at surfaces , 2005 .

[43]  K. Binder,et al.  Screening of hydrodynamic interactions in dense polymer solutions: a phenomenological theory and neutron-scattering investigations , 1984 .

[44]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[45]  Kurt Binder,et al.  Dynamics of single semiflexible polymers in dilute solution. , 2016, The Journal of chemical physics.

[46]  Jacinta C. Conrad,et al.  Mobility of Nanoparticles in Semidilute Polyelectrolyte Solutions , 2014 .

[47]  Gerhard Gompper,et al.  Hydrodynamic correlations in multiparticle collision dynamics fluids. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  T. Ihle,et al.  Stochastic rotation dynamics: a Galilean-invariant mesoscopic model for fluid flow. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  K. Winey,et al.  Fast Nanorod Diffusion through Entangled Polymer Melts. , 2015, ACS macro letters.

[50]  T. Lin,et al.  Phenomenological scaling laws for ‘‘semidilute’’ macromolecule solutions from light scattering by optical probe particles , 1985 .

[51]  J. D. Wells,et al.  On the transport of compact particles through solutions of chain-polymers , 1973, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[52]  P. Tong,et al.  Transport of Probe Particles in Semidilute Polymer Solutions , 1998 .

[53]  Marcin Tabaka,et al.  Motion of nanoprobes in complex liquids within the framework of the length-scale dependent viscosity model. , 2015, Advances in colloid and interface science.

[54]  J. Conrad,et al.  Size-Dependent Dynamics of Nanoparticles in Unentangled Polyelectrolyte Solutions. , 2015, ACS macro letters.

[55]  Michael P. Howard,et al.  Inertial and viscoelastic forces on rigid colloids in microfluidic channels. , 2015, The Journal of chemical physics.

[56]  Suresh Narayanan,et al.  Breakdown of the continuum stokes-einstein relation for nanoparticle diffusion. , 2007, Nano letters.

[57]  R. Kapral Multiparticle Collision Dynamics: Simulation of Complex Systems on Mesoscales , 2008 .

[58]  J. van der Gucht,et al.  Rouse dynamics of colloids bound to polymer networks. , 2007, Physical review letters.

[59]  K. Takano ON SOLUTION OF , 1983 .

[60]  K. Schweizer,et al.  Microscopic Theory of the Long-Time Diffusivity and Intermediate-Time Anomalous Transport of a Nanoparticle in Polymer Melts , 2015 .

[61]  Antonius Broekhuis,et al.  Polymers for enhanced oil recovery: A paradigm for structure–property relationship in aqueous solution , 2011 .

[62]  Arash Nikoubashman,et al.  Self-assembly of colloidal micelles in microfluidic channels. , 2016, Soft matter.

[63]  H. Butt,et al.  Comparative analysis of viscosity of complex liquids and cytoplasm of mammalian cells at the nanoscale. , 2011, Nano letters.

[64]  George D. J. Phillies,et al.  Universal scaling equation for self-diffusion by macromolecules in solution , 1986 .

[65]  S. Egorov Anomalous nanoparticle diffusion in polymer solutions and melts: a mode-coupling theory study. , 2011, The Journal of chemical physics.

[66]  F Müller-Plathe,et al.  Reversing the perturbation in nonequilibrium molecular dynamics: an easy way to calculate the shear viscosity of fluids. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[67]  R Everaers,et al.  Screening of hydrodynamic interactions in semidilute polymer solutions: a computer simulation study. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.