Combination of Machine-Learning Algorithms for Fault Prediction in High-Precision Foundries
暂无分享,去创建一个
[1] Yoseba K. Penya,et al. Enhanced Foundry Production Control , 2010, DEXA.
[2] Matt Brown,et al. Invited talk , 2007 .
[3] Junyan Yang,et al. Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension , 2007 .
[4] P. Tuyls. Invited Talk 2 , 2010 .
[5] Igor Santos,et al. Enhancing fault prediction on automatic foundry processes , 2010, 2010 World Automation Congress.
[6] Wenfei Fan,et al. Keys with Upward Wildcards for XML , 2001, DEXA.
[7] Arvinder Kaur,et al. Comparative analysis of regression and machine learning methods for predicting fault proneness models , 2009, Int. J. Comput. Appl. Technol..
[8] J. Fernández-Carrasquilla,et al. Estudio de una fundicin nodular mediante mecnica de la fractura , 1999 .
[9] Thomas G. Dietterich. Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.
[10] David J. C. MacKay,et al. Neural network model of creep strength of austenitic stainless steels , 2002 .
[11] Steven R Schmid Kalpakjian,et al. Manufacturing Engineering and Technology , 1991 .
[12] Paulo J. G. Lisboa,et al. The Use of Artificial Neural Networks in Decision Support in Cancer: a Systematic Review , 2005 .
[13] Yoseba K. Penya,et al. N-grams-based File Signatures for Malware Detection , 2009, ICEIS.
[14] J. P. Oria,et al. Ultrasonic sensing classification of foundry pieces applying neural networks , 1998, AMC'98 - Coimbra. 1998 5th International Workshop on Advanced Motion Control. Proceedings (Cat. No.98TH8354).
[15] Yoseba K. Penya,et al. Towards noise and error reduction on foundry data gathering processes , 2010, 2010 IEEE International Symposium on Industrial Electronics.
[16] Ron Kohavi,et al. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.
[17] Ludmila I. Kuncheva,et al. Combining Pattern Classifiers: Methods and Algorithms , 2004 .
[18] R. Gonzaga-Cinco,et al. Dependencia de las propiedades mecánicas y de la composición química en la fundición de grafito esferoidal , 2006 .
[19] Subhash C. Bagui,et al. Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.
[20] Stephen R. Garner,et al. WEKA: The Waikato Environment for Knowledge Analysis , 1996 .
[21] Yoseba K. Penya,et al. Optimising Machine-Learning-Based Fault Prediction in Foundry Production , 2009, IWANN.
[22] Johannes Fürnkranz,et al. An Evaluation of Grading Classifiers , 2001, IDA.
[23] Jiri Matas,et al. On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..
[24] R. Gonzaga-Cinco,et al. Mecanical properties dependency on chemical composition of spheroidal graphite cast iron , 2006 .
[25] Yoseba K. Penya,et al. Machine-learning-based mechanical properties prediction in foundry production , 2009, 2009 ICCAS-SICE.
[26] David H. Wolpert,et al. Stacked generalization , 1992, Neural Networks.
[27] J. Sertucha,et al. Influencia de las condiciones de moldeo y las características de los moldes sobre la formación de defectos de contracción en piezas de fundición esferoidal , 2007 .
[28] Pei Zhang,et al. Optimizing Casting Parameters of Ingot Based on Neural Network and Genetic Algorithm , 2008, 2008 Fourth International Conference on Natural Computation.
[29] C W Lung,et al. Mechanical properties of metals , 1999 .
[30] Tom Fawcett,et al. Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions , 1997, KDD.
[31] Juan M. Corchado,et al. Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living, 10th International Work-Conference on Artificial Neural Networks, IWANN 2009 Workshops, Salamanca, Spain, June 10-12, 2009. Proceedings, Part II , 2009, IWANN.
[32] David J. Hand,et al. Advances in intelligent data analysis , 2000 .
[33] Yoseba K. Penya,et al. Mechanical properties prediction in high-precision foundry production , 2009, 2009 7th IEEE International Conference on Industrial Informatics.
[34] M Perzyk,et al. Detection of causes of casting defects assisted by artificial neural networks , 2003 .