DARPA Subterranean Challenge: Multi-robotic Exploration of Underground Environments

The Subterranean Challenge (SubT) is a contest organised by the Defense Advanced Research Projects Agency (DARPA). The contest reflects the requirement of increasing safety and efficiency of underground search-and-rescue missions. In the SubT challenge, teams of mobile robots have to detect, localise and report positions of specific objects in an underground environment. This paper provides a description of the multi-robot heterogeneous exploration system of our CTU-CRAS team, which scored third place in the Tunnel Circuit round, surpassing the performance of all other non-DARPA-funded competitors. In addition to the description of the platforms, algorithms and strategies used, we also discuss the lessons-learned by participating at such contest.

[1]  Stefan Kohlbrecher,et al.  A flexible and scalable SLAM system with full 3D motion estimation , 2011, 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics.

[2]  Roland Siegwart,et al.  Comparing ICP variants on real-world data sets , 2013, Auton. Robots.

[3]  Atanu Maity,et al.  Amphibian subterranean robot for mine exploration , 2013, 2013 International Conference on Robotics, Biomimetics, Intelligent Computational Systems.

[4]  Robin R. Murphy,et al.  Mobile robots in mine rescue and recovery , 2009, IEEE Robotics & Automation Magazine.

[5]  Ching-Chang Wong,et al.  Soccer robot design for FIRA MiroSot League , 2005, IEEE International Conference on Mechatronics, 2005. ICM '05..

[6]  Vijay Kumar,et al.  Cooperative autonomous search, grasping, and delivering in a treasure hunt scenario by a team of unmanned aerial vehicles , 2018, J. Field Robotics.

[7]  Rüdiger Dillmann,et al.  KA 1.10 Benchmarks for Robotics Research , 2004 .

[8]  T. Krajnik,et al.  Cooperative μUAV-UGV autonomous indoor surveillance , 2012, International Multi-Conference on Systems, Sygnals & Devices.

[9]  William Whittaker,et al.  Recent developments in subterranean robotics , 2006, J. Field Robotics.

[10]  Karel Zimmermann,et al.  Data-Driven Policy Transfer With Imprecise Perception Simulation , 2018, IEEE Robotics and Automation Letters.

[11]  Wolfram Burgard,et al.  Speeding-Up Robot Exploration by Exploiting Background Information , 2016, IEEE Robotics and Automation Letters.

[12]  Wolfram Burgard,et al.  Collaborative multi-robot exploration , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[13]  Dmitry Berenson,et al.  Achieving Reliable Humanoid Robot Operations in the DARPA Robotics Challenge: Team WPI-CMU’s Approach , 2018 .

[14]  Pedro U. Lima,et al.  The RoCKIn@Home challenge , 2014, ISR 2014.

[15]  M. J. D. Hayes,et al.  Localization in large-scale underground environments with RFID , 2011, 2011 24th Canadian Conference on Electrical and Computer Engineering(CCECE).

[16]  Jan Faigl,et al.  On Autonomous Spatial Exploration with Small Hexapod Walking Robot using Tracking Camera Intel RealSense T265 , 2019, 2019 European Conference on Mobile Robots (ECMR).

[17]  Tom Duckett,et al.  Lifelong Information-Driven Exploration to Complete and Refine 4-D Spatio-Temporal Maps , 2016, IEEE Robotics and Automation Letters.

[18]  Tomás Svoboda,et al.  Autonomous flipper control with safety constraints , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[19]  Wolfram Burgard,et al.  A system for volumetric robotic mapping of abandoned mines , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[20]  Sven Wachsmuth,et al.  Towards automated system and experiment reproduction in robotics , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[21]  Marc Donner,et al.  Design of an Autonomous Robot for Mapping, Navigation, and Manipulation in Underground Mines , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[22]  Jie Zhao,et al.  Research on the Application of a Marsupial Robot for Coal Mine Rescue , 2008, ICIRA.

[23]  Jan Faigl,et al.  On localization and mapping with RGB-D sensor and hexapod walking robot in rough terrains , 2016, 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[24]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Brian Yamauchi,et al.  A frontier-based approach for autonomous exploration , 1997, Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation CIRA'97. 'Towards New Computational Principles for Robotics and Automation'.

[26]  David Portugal,et al.  An evaluation of 2D SLAM techniques available in Robot Operating System , 2013, 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR).

[27]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[28]  Daniel F. Huber,et al.  Automatic Three-dimensional Underground Mine Mapping , 2006, Int. J. Robotics Res..

[29]  Weidong Wang,et al.  Development of Search‐and‐rescue Robots for Underground Coal Mine Applications , 2014, J. Field Robotics.

[30]  Alexander Ferrein,et al.  Towards a Mobile Mapping Robot for Underground Mines , .

[31]  Tomás Svoboda,et al.  TRADR Project: Long-Term Human-Robot Teaming for Robot Assisted Disaster Response , 2015, KI - Künstliche Intelligenz.

[32]  Ali Farhadi,et al.  YOLOv3: An Incremental Improvement , 2018, ArXiv.