The roles of GpsB and DivIVA in Staphylococcus aureus growth and division

The spheroid bacterium S. aureus is often used as a model of morphogenesis due to its apparent simple cell cycle. S. aureus has many cell division proteins that are conserved across bacteria alluding to common functions. However, despite intensive study we still do not know the roles of many of these components. Here we have examined the functions of the paralogues DivIVA and GpsB in the S. aureus cell cycle. Cells lacking gpsB display a more spherical phenotype than wild type, associated with a decrease in peripheral cell wall peptidoglycan synthesis. This correlates with an increased localisation of penicillin binding proteins at the developing septum, notably PBPs 2 and 3. Our results highlight the role of GpsB as an apparent regulator of cell morphogenesis in S. aureus.

[1]  S. Foster,et al.  The Staphylococcus aureus cell division protein, DivIC, interacts with the cell wall and controls its biosynthesis , 2022, Communications Biology.

[2]  S. Foster,et al.  Demonstration of the role of cell wall homeostasis in Staphylococcus aureus growth and the action of bactericidal antibiotics , 2021, Proceedings of the National Academy of Sciences.

[3]  S. Foster,et al.  Staphylococcus aureus cell wall structure and dynamics during host-pathogen interaction , 2021, PLoS pathogens.

[4]  M. G. Pinho,et al.  Reassessment of the distinctive geometry of Staphylococcus aureus cell division , 2020, Nature Communications.

[5]  U. Skoglund,et al.  Spo0J and SMC are required for normal chromosome segregation in Staphylococcus aureus , 2020, MicrobiologyOpen.

[6]  Lauren R Hammond,et al.  ¡vIVA la DivIVA! , 2019, Journal of bacteriology.

[7]  L. Aravind,et al.  Deciphering the Role of a SLOG Superfamily Protein YpsA in Gram-Positive Bacteria , 2019, Front. Microbiol..

[8]  Patricia Reed,et al.  SEDS–bPBP pairs direct lateral and septal peptidoglycan synthesis in Staphylococcus aureus , 2019, Nature Microbiology.

[9]  S. Foster,et al.  Molecular coordination of Staphylococcus aureus cell division , 2018, eLife.

[10]  S. Foster,et al.  Coordination of Chromosome Segregation and Cell Division in Staphylococcus aureus , 2017, Front. Microbiol..

[11]  M. Winkler,et al.  Suppression and synthetic‐lethal genetic relationships of ΔgpsB mutations indicate that GpsB mediates protein phosphorylation and penicillin‐binding protein interactions in Streptococcus pneumoniae D39 , 2017, Molecular microbiology.

[12]  J. Bender,et al.  Suppressor Mutations Linking gpsB with the First Committed Step of Peptidoglycan Biosynthesis in Listeria monocytogenes , 2016, Journal of bacteriology.

[13]  R. Lewis,et al.  Subunit Arrangement in GpsB, a Regulator of Cell Wall Biosynthesis , 2016, Microbial drug resistance.

[14]  J. Errington,et al.  Complex polar machinery required for proper chromosome segregation in vegetative and sporulating cells of Bacillus subtilis , 2016, Molecular microbiology.

[15]  P. M. Pereira,et al.  Cell shape dynamics during the staphylococcal cell cycle , 2015, Nature Communications.

[16]  S. Foster,et al.  Bacterial Cell Enlargement Requires Control of Cell Wall Stiffness Mediated by Peptidoglycan Hydrolases , 2015, mBio.

[17]  Timothy K Lee,et al.  Mechanical crack propagation drives millisecond daughter cell separation in Staphylococcus aureus , 2015, Science.

[18]  Marina Santiago,et al.  A new platform for ultra-high density Staphylococcus aureus transposon libraries , 2015, BMC Genomics.

[19]  S. Foster,et al.  Staphylococcus aureus DivIB is a peptidoglycan‐binding protein that is required for a morphological checkpoint in cell division , 2014, Molecular microbiology.

[20]  P. M. Pereira,et al.  Reduction of the peptidoglycan crosslinking causes a decrease in stiffness of the Staphylococcus aureus cell envelope. , 2014, Biophysical journal.

[21]  S. Foster,et al.  Differential localization of LTA synthesis proteins and their interaction with the cell division machinery in Staphylococcus aureus , 2014, Molecular microbiology.

[22]  S. Foster,et al.  Different walls for rods and balls: the diversity of peptidoglycan , 2014, Molecular microbiology.

[23]  J. Veening,et al.  How to get (a)round: mechanisms controlling growth and division of coccoid bacteria , 2013, Nature Reviews Microbiology.

[24]  D. Missiakas,et al.  Staphylococcus aureus Mutants Lacking the LytR-CpsA-Psr Family of Enzymes Release Cell Wall Teichoic Acids into the Extracellular Medium , 2013, Journal of bacteriology.

[25]  V. Kent Cell wall architecture and the role of wall teichoic acid in Staphylococcus aureus , 2013 .

[26]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[27]  J. Errington,et al.  A widespread family of bacterial cell wall assembly proteins , 2011, The EMBO journal.

[28]  N. McCallum,et al.  LytR-CpsA-Psr proteins in Staphylococcus aureus display partial functional redundancy and the deletion of all three severely impairs septum placement and cell separation. , 2011, FEMS microbiology letters.

[29]  Helena Veiga,et al.  Absence of nucleoid occlusion effector Noc impairs formation of orthogonal FtsZ rings during Staphylococcus aureus cell division , 2011, Molecular microbiology.

[30]  Jagath C. Kasturiarachchi,et al.  Multiple essential roles for EzrA in cell division of Staphylococcus aureus , 2011, Molecular microbiology.

[31]  P. M. Pereira,et al.  Teichoic acids are temporal and spatial regulators of peptidoglycan cross-linking in Staphylococcus aureus , 2010, Proceedings of the National Academy of Sciences.

[32]  T. Leonard,et al.  Features critical for membrane binding revealed by DivIVA crystal structure , 2010, The EMBO journal.

[33]  Kumaran S Ramamurthi,et al.  Negative membrane curvature as a cue for subcellular localization of a bacterial protein , 2009, Proceedings of the National Academy of Sciences.

[34]  J. Errington,et al.  Localisation of DivIVA by targeting to negatively curved membranes , 2009, The EMBO journal.

[35]  K. Kurokawa,et al.  Pleiotropic Roles of Polyglycerolphosphate Synthase of Lipoteichoic Acid in Growth of Staphylococcus aureus Cells , 2008, Journal of bacteriology.

[36]  Frederico J. Gueiros-Filho,et al.  Cytological Characterization of YpsB, a Novel Component of the Bacillus subtilis Divisome , 2008, Journal of bacteriology.

[37]  S. Ramirez‐Arcos,et al.  Identification of the coiled-coil domains of Enterococcus faecalis DivIVA that mediate oligomerization and their importance for biological function. , 2008, Journal of biochemistry.

[38]  J. Errington,et al.  Control of the cell elongation–division cycle by shuttling of PBP1 protein in Bacillus subtilis , 2008, Molecular microbiology.

[39]  O. Schneewind,et al.  Synthesis of glycerol phosphate lipoteichoic acid in Staphylococcus aureus , 2007, Proceedings of the National Academy of Sciences.

[40]  S. E. Perry,et al.  The Bacillus subtilis DivIVA Protein Has a Sporulation-Specific Proximity to Spo0J , 2006, Journal of bacteriology.

[41]  C. Jacobs-Wagner,et al.  Bacterial cell shape , 2005, Nature Reviews Microbiology.

[42]  J. Errington,et al.  Recruitment of penicillin‐binding protein PBP2 to the division site of Staphylococcus aureus is dependent on its transpeptidation substrates , 2004, Molecular microbiology.

[43]  J. Errington,et al.  A divIVA null mutant of Staphylococcus aureus undergoes normal cell division. , 2004, FEMS microbiology letters.

[44]  M. Arnaud,et al.  New Vector for Efficient Allelic Replacement in Naturally Nontransformable, Low-GC-Content, Gram-Positive Bacteria , 2004, Applied and Environmental Microbiology.

[45]  H. Stahlberg,et al.  Oligomeric structure of the Bacillus subtilis cell division protein DivIVA determined by transmission electron microscopy , 2004, Molecular microbiology.

[46]  P. Lewis,et al.  Early targeting of Min proteins to the cell poles in germinated spores of Bacillus subtilis: evidence for division apparatus‐independent recruitment of Min proteins to the division site , 2003, Molecular microbiology.

[47]  S. Foster,et al.  MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake , 2002, Molecular microbiology.

[48]  A. Wilkinson,et al.  Oligomerization of the Bacillus subtilis division protein DivIVA. , 2002, Microbiology.

[49]  A. Tomasz,et al.  Complementation of the Essential Peptidoglycan Transpeptidase Function of Penicillin-Binding Protein 2 (PBP2) by the Drug Resistance Protein PBP2A in Staphylococcus aureus , 2001, Journal of bacteriology.

[50]  A. Tomasz,et al.  An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[51]  M. Kiriukhin,et al.  Biosynthesis of the Glycolipid Anchor in Lipoteichoic Acid of Staphylococcus aureus RN4220: Role of YpfP, the Diglucosyldiacylglycerol Synthase , 2001, Journal of bacteriology.

[52]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[53]  L. Aravind Guilt by association: contextual information in genome analysis. , 2000, Genome research.

[54]  Warren C. Lathe,et al.  Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. , 2000, Genome research.

[55]  A. Dove Predicting protein function , 1999, Nature Biotechnology.

[56]  A. Tomasz,et al.  Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus , 1984, Journal of bacteriology.

[57]  A. Wyke,et al.  A role in vivo for penicillin-binding protein-4 of Staphylococcus aureus. , 1981, European journal of biochemistry.

[58]  R. Novick,et al.  IN VIVO TRANSMISSION OF DRUG RESISTANCE FACTORS BETWEEN STRAINS OF STAPHYLOCOCCUS AUREUS , 1967, The Journal of experimental medicine.

[59]  Elizabeth M Glass,et al.  Generating a collection of insertion mutations in the Staphylococcus aureus genome using bursa aurealis. , 2008, Methods in molecular biology.