A log NH I = 22.6 Damped Lyα Absorber in a Dark Gamma-Ray Burst: The Environment of GRB 050401*

The optical afterglow spectrum of GRB 050401 (at z = 2.8992 ± 0.0004) shows the presence of a damped Lyα absorber (DLA), with log N = 22.6 ± 0.3. This is the highest column density ever observed in a DLA and is about 5 times larger than the strongest DLA detected so far in any QSO spectrum. From the optical spectrum, we also find a very large Zn column density, implying an abundance of [Zn/H] = -1.0 ± 0.4. These large columns are supported by the early X-ray spectrum from Swift XRT, which shows a column density (in excess of Galactic) of log NH = 22.21 assuming solar abundances (at z = 2.9). The comparison of this X-ray column density, which is dominated by absorption due to α-chain elements, and the H I column density derived from the Lyα absorption line allows us to derive a metallicity for the absorbing matter of [α/H] = -0.4 ± 0.3. The optical spectrum is reddened and can be well reproduced with a power law with SMC extinction, where AV = 0.62 ± 0.06. But the total optical extinction can also be constrained independent of the shape of the extinction curve: from the optical to X-ray spectral energy distribution, we find 0.5 AV 4.5. However, even this upper limit, independent of the shape of the extinction curve, is still well below the dust column that is inferred from the X-ray column density, i.e., AV = 9.1. This discrepancy might be explained by a small dust content with high metallicity (low dust-to-metals ratio). Gray extinction cannot explain the discrepancy, since we are comparing the metallicity to a measurement of the total extinction (without reference to the reddening). Little dust with high metallicity may be produced by sublimation of dust grains or may naturally exist in systems younger than a few hundred megayears.

[1]  Jason X. Prochaska,et al.  The Age-Metallicity Relation of the Universe in Neutral Gas: The First 100 Damped Lyα Systems , 2003 .

[2]  K. Pedersen,et al.  A very energetic supernova associated with the γ-ray burst of 29 March 2003 , 2003, Nature.

[3]  Dust formation in winds of long-period variables V. The influence of micro-physical dust properties in carbon stars , 2002, astro-ph/0210282.

[4]  S. R. Kulkarni,et al.  The Observed Offset Distribution of Gamma-Ray Bursts from Their Host Galaxies: A Robust Clue to the Nature of the Progenitors , 2000, astro-ph/0010176.

[5]  E. Rol,et al.  Very High Column Density and Small Reddening toward GRB 020124 at z = 3.20 , 2003, astro-ph/0307331.

[6]  IAA-CSIC,et al.  UV star-formation rates of GRB host galaxies , 2004, astro-ph/0407066.

[7]  S. M. Fall,et al.  Dust Depletion and Extinction in a Gamma-Ray Burst Afterglow , 2004 .

[8]  Kenneth R. Sembach,et al.  INTERSTELLAR ABUNDANCES FROM ABSORPTION-LINE OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 1996 .

[9]  S. M. Fall,et al.  Metallicity Evolution of Damped Lyα Galaxies , 2002, astro-ph/0207661.

[10]  Y. Pei,et al.  Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .

[11]  P. Dokkum Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[12]  B. Draine,et al.  Gamma-Ray Burst in a Molecular Cloud: Destruction of Dust and H2 and the Emergent Spectrum , 2001, astro-ph/0108243.

[13]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[14]  Alexander Heger,et al.  The Progenitor Stars of Gamma-Ray Bursts , 2005, astro-ph/0508175.

[15]  Jason X. Prochaska,et al.  Echelle Spectroscopy of a Gamma-Ray Burst Afterglow at z = 3.969: A New Probe of the Interstellar and Intergalactic Media in the Young Universe , 2005 .

[16]  Titus J. Galama,et al.  High Column Densities and Low Extinctions of Gamma-Ray Bursts: Evidence for Hypernovae and Dust Destruction , 2000, astro-ph/0009367.

[17]  J. N. Reeves,et al.  Outshining the Quasars at Reionization: The X-Ray Spectrum and Light Curveof the Redshift 6.29 Gamma-Ray Burst GRB 050904 , 2005, astro-ph/0509640.

[18]  Warren R. Brown,et al.  Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329 , 2003, astro-ph/0304173.

[19]  C. Foltz,et al.  The Large Bright QSO Survey for Damped LY alpha Absorption Systems , 1995 .

[20]  L. A. Antonelli,et al.  Absorption in Gamma-Ray Burst Afterglows , 2004, astro-ph/0403149.

[21]  Y. Yoshii,et al.  Cosmological Implications of the Very High Redshift GRB 050904 , 2006 .

[22]  S. Woosley Gamma-ray bursts from stellar mass accretion disks around black holes , 1993 .

[23]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[24]  Chris L. Fryer,et al.  Binary Merger Progenitors for Gamma-Ray Bursts and Hypernovae , 2005 .

[25]  R. M. Quimby,et al.  Prompt optical detection of GRB 050401 with ROTSE-IIIa , 2005 .

[26]  H. Gail,et al.  Composition and quantities of dust produced by AGB-stars and returned to the interstellar medium , 2006 .

[27]  E. Rol,et al.  The afterglow of the short/intermediate-duration gamma-ray burst GRB 000301C: A jet at z = 2:04 ?;??;??? , 2000 .

[28]  Protogalactic Disk Models of Damped Lyα Kinematics , 1998, astro-ph/9805293.

[29]  James E. Rhoads,et al.  X-Ray Destruction of Dust along the Line of Sight to γ-Ray Bursts , 2001, astro-ph/0106343.

[30]  Max Pettini,et al.  Zn and Cr abundances in damped Lyman alpha systems from the CORALS survey , 2005 .

[31]  S. M. Fall,et al.  Heavy-Element Abundances and Dust Depletions in the Host Galaxies of Three Gamma-Ray Bursts , 2002, astro-ph/0203154.

[32]  Kevin C. Hurley,et al.  The Host Galaxy of GRB 031203: Implications of Its Low Metallicity, Low Redshift, and Starburst Nature , 2004, astro-ph/0402085.

[33]  B. Draine,et al.  Dust Sublimation by Gamma-ray Bursts and Its Implications , 1999, astro-ph/9909020.

[34]  A. J. Castro-Tirado,et al.  The GRB 030329 host: a blue low metallicity subluminous galaxy with intense star formation , 2005 .

[35]  Dan McCammon,et al.  Interstellar photoelectric absorption cross-sections, 0.03-10 keV , 1983 .

[36]  Davide Lazzati,et al.  Time-dependent Photoionization in a Dusty Medium. II. Evolution of Dust Distributions and Optical Opacities , 2002, astro-ph/0211235.

[37]  India,et al.  The VLT-UVES survey for molecular hydrogen in high-redshift damped Lyman-alpha systems , 2003 .

[38]  J. Dickey,et al.  H I in the Galaxy , 1990 .

[39]  K. Lanzetta,et al.  EVOLUTION OF THE GASEOUS CONTENT OF THE UNIVERSE , 1993 .

[40]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[41]  A. S. Fruchter,et al.  On the Lyalpha emission from gamma-ray burst host galaxies: Evidence for low metallicities , 2003, astro-ph/0306403.

[42]  L. A. Antonelli,et al.  Extinction properties of the X-ray bright/optically faint afterglow of GRB 020405 , 2005, astro-ph/0506411.

[43]  Takashi Hattori,et al.  An optical spectrum of the afterglow of a γ-ray burst at a redshift of z = 6.295 , 2006, Nature.

[44]  C. Péroux,et al.  The dust obscuration bias in damped Lyman α systems , 2005, astro-ph/0502137.

[45]  Patrick Petitjean,et al.  Molecular Hydrogen in high redshift Damped Lyman-α systems , 2002 .

[46]  J. Gorosabel,et al.  Swift identification of dark gamma-ray bursts , 2004 .

[47]  S. Mereghetti,et al.  Are the hosts of gamma-ray bursts sub-luminous and blue galaxies? , 2003, astro-ph/0301149.