The Multiplicative Version of the Wiener Index

The classical Wiener index, W(G), is equal to the sum of the distances between all pairs of vertexes of a (molecular) graph, G. We now consider a related topological index, pi(G), equal to the product of distances between all pairs of vertexes of G. The basic properties of the pi index are established and its possible physicochemical applications examined. In the case of alkanes, pi and W are highly correlated; a slightly curvilinear correlation exists between In pi and W.

[1]  Ivan Gutman,et al.  A Collective Property of Trees and Chemical Trees , 1998, J. Chem. Inf. Comput. Sci..

[2]  H. Hosoya Topological Index. A Newly Proposed Quantity Characterizing the Topological Nature of Structural Isomers of Saturated Hydrocarbons , 1971 .

[3]  I. Gutman,et al.  RELATIONS BETWEEN WIENER-TYPE TOPOLOGICAL INDICES OF PLEROGRAMS AND KENOGRAMS , 1998 .

[4]  N. Trinajstic,et al.  The Wiener Index: Development and Applications , 1995 .

[5]  Wolfgang Linert,et al.  Trees with Extremal Hyper-Wiener Index: Mathematical Basis and Chemical Applications , 1997, J. Chem. Inf. Comput. Sci..

[6]  Ivan Gutman,et al.  WIENER-TYPE TOPOLOGICAL INDICES , 1998 .

[7]  Dejan Plavšić,et al.  The Distance Matrix in Chemistry , 1993 .

[8]  István Lukovits,et al.  On the Definition of the Hyper-Wiener Index for Cycle-Containing Structures , 1995, J. Chem. Inf. Comput. Sci..

[9]  Zlatko Mihalić,et al.  A graph-theoretical approach to structure-property relationships , 1992 .

[10]  Douglas J. Klein,et al.  Wiener-Number-Related Sequences , 1999, J. Chem. Inf. Comput. Sci..

[11]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[12]  A. Balaban,et al.  Topological Indices for Structure-Activity Correlations , 1983, Steric Effects in Drug Design.

[13]  M. Randic,et al.  MOLECULAR PROFILES NOVEL GEOMETRY-DEPENDENT MOLECULAR DESCRIPTORS , 1995 .

[14]  N. Zefirov,et al.  Combinatorial models and algorithms in chemistry. The expanded Wiener number—a novel topological index , 1990 .

[15]  Ivan Gutman BUCKLEY-TYPE RELATIONS FOR WIENER-TYPE STRUCTURE-DESCRIPTORS , 1998 .

[16]  István Lukovits,et al.  Extensions of the Wiener Number , 1996, J. Chem. Inf. Comput. Sci..

[17]  Sonja Nikolic,et al.  Comparative study of molecular descriptors derived from the distance matrix , 1992, J. Chem. Inf. Comput. Sci..

[18]  Mircea V. Diudea,et al.  Indices of Reciprocal Properties or Harary Indices , 1997, J. Chem. Inf. Comput. Sci..

[19]  I. Gutman,et al.  Some recent results in the theory of the Wiener number , 1993 .

[20]  N. Trinajstic,et al.  On the Harary index for the characterization of chemical graphs , 1993 .

[21]  Milan Randic,et al.  Molecular Shape Profiles , 1995, J. Chem. Inf. Comput. Sci..

[22]  Ivan Gutman,et al.  Graph representation of organic molecules Cayley's plerograms vs. his kenograms , 1998 .

[23]  Paul G. Seybold,et al.  Molecular structure: Property relationships , 1987 .