Hierarchical-environment-assisted non-Markovian speedup dynamics control

We investigate the qubit in the hierarchical environment where the first level is just one lossy cavity while the second level is the N-coupled lossy cavities. In the weak coupling regime between the qubit and the first level environment, the dynamics crossovers from the original Markovian to the new non-Markovian and from no-speedup to speedup can be realized by controlling the hierarchical environment, i.e., manipulating the number of cavities or the coupling strength between two nearest-neighbor cavities in the second level environment. And we find that the coupling strength between two nearest-neighbor cavities and the number of cavities in the second level environment have the opposite effect on the non-Markovian dynamics and speedup evolution of the qubit. In addition, in the case of strong coupling between the qubit and the first level environment, we can be surprised to find that, compared with the original non-Markovian dynamics, the added second level environment cannot play a beneficial role on the speedup of the dynamics of the system.

[1]  M. Znidaric,et al.  Non-Markovian behavior of small and large complex quantum systems. , 2011, Physical review letters.

[2]  Jyrki Piilo,et al.  Measure for the degree of non-markovian behavior of quantum processes in open systems. , 2009, Physical review letters.

[3]  H. Fan,et al.  Classical-driving-assisted quantum speed-up , 2014, 1410.7106.

[4]  Matteo G. A. Paris,et al.  Experimental investigation of initial system-environment correlations via trace-distance evolution , 2011, 1105.0174.

[5]  Shunlong Luo,et al.  Quantum speedup in a memory environment , 2013, 1311.1593.

[6]  V. Giovannetti,et al.  Quantum channels and memory effects , 2012, 1207.5435.

[7]  J. Piilo,et al.  Initial correlations in open-systems dynamics: The Jaynes-Cummings model , 2010, 1010.4402.

[8]  J. Paz,et al.  Dynamics of the entanglement between two oscillators in the same environment. , 2008, Physical review letters.

[9]  Matteo Biondi,et al.  Nonequilibrium dynamics of coupled qubit-cavity arrays. , 2012, Physical review letters.

[10]  Hong Guo,et al.  Minimal evolution time and quantum speed limit of non-Markovian open systems , 2014, Scientific Reports.

[11]  Shinichi Tojo,et al.  Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.

[12]  I. D. Vega,et al.  Dynamics of non-Markovian open quantum systems , 2017 .

[13]  G. Falci,et al.  Recovering entanglement by local operations , 2012, 1207.3294.

[14]  Keyu Xia,et al.  All-Optical Switching and Router via the Direct Quantum Control of Coupling between Cavity Modes , 2013 .

[15]  Andrew S. Dzurak,et al.  A single-atom electron spin qubit in silicon , 2012, Nature.

[16]  Heng Fan,et al.  Control of quantum dynamics: Non-Markovianity and the speedup of the open system evolution , 2016 .

[17]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[18]  Augusto J. Roncaglia,et al.  Dynamical phases for the evolution of the entanglement between two oscillators coupled to the same environment , 2008, 0809.1676.

[19]  S. Girvin,et al.  Cooling and Autonomous Feedback in a Bose-Hubbard Chain with Attractive Interactions. , 2015, Physical review letters.

[20]  Dariusz Chruściński,et al.  Non-Markovian quantum dynamics: local versus nonlocal. , 2009, Physical review letters.

[21]  J Bravo-Abad,et al.  Quantum emitters near a metal nanoparticle: strong coupling and quenching. , 2014, Physical review letters.

[22]  Jing Liu,et al.  Quantum speed limits in open systems: Non-Markovian dynamics without rotating-wave approximation , 2015, Scientific Reports.

[23]  Guang-Can Guo,et al.  Photonic realization of nonlocal memory effects and non-Markovian quantum probes , 2012, Scientific Reports.

[24]  韩伟,et al.  Quantum speed limit for arbitrary initial states , 2014 .

[25]  M. Paternostro,et al.  Geometrical characterization of non-Markovianity , 2013, 1302.6673.

[26]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[27]  Jyrki Piilo,et al.  Measure for the non-Markovianity of quantum processes , 2010, 1002.2583.

[28]  Franco Nori,et al.  General non-Markovian dynamics of open quantum systems. , 2012, Physical review letters.

[29]  Erika Andersson,et al.  Revival of quantum correlations without system-environment back-action , 2010, 1009.5710.

[30]  J Eisert,et al.  Assessing non-Markovian quantum dynamics. , 2007, Physical review letters.

[31]  Jian Zou,et al.  Non-Markovianity of the damped Jaynes-Cummings model with detuning , 2010 .

[32]  Zhong-Xiao Man,et al.  Non-Markovian dynamics of a two-level system in the presence of hierarchical environments. , 2015, Optics express.

[33]  S. Huelga,et al.  Quantum non-Markovianity: characterization, quantification and detection , 2014, Reports on progress in physics. Physical Society.

[34]  Heng-Na Xiong,et al.  Exact non-Markovian cavity dynamics strongly coupled to a reservoir , 2010, 1005.0904.

[35]  J. Luczka,et al.  Distance growth of quantum states due to initial system-environment correlations , 2010 .

[36]  E. Lutz,et al.  Quantum speed limit for non-Markovian dynamics. , 2013, Physical review letters.

[37]  Rosario Lo Franco,et al.  Harnessing non-Markovian quantum memory by environmental coupling , 2015, 1506.08293.

[38]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[39]  W. Marsden I and J , 2012 .

[40]  Guang-Can Guo,et al.  Non-Markovianity-assisted high-fidelity Deutsch–Jozsa algorithm in diamond , 2018, 1801.07381.

[41]  S. Maniscalco,et al.  Role of non-Markovianity and backflow of information in the speed of quantum evolution , 2017, 1704.08061.

[42]  Jyrki Piilo,et al.  Witness for initial system-environment correlations in open-system dynamics , 2010, 1004.2184.

[43]  Yasunobu Nakamura,et al.  Quantum computers , 2010, Nature.

[44]  D. Chru'sci'nski,et al.  Measures of non-Markovianity: Divisibility versus backflow of information , 2011, 1102.4318.

[45]  Jun-Hong An,et al.  Non-Markovian entanglement dynamics of noisy continuous-variable quantum channels , 2007, 0707.2278.

[46]  Wei-Min Zhang,et al.  Non-Markovianity measure using two-time correlation functions , 2015 .

[47]  Guang-Can Guo,et al.  Nonlocal memory effects in the dynamics of open quantum systems. , 2011, Physical review letters.

[48]  C. P. Sun,et al.  Quantum Fisher information flow and non-Markovian processes of open systems , 2009, 0912.0587.

[49]  Susana F Huelga,et al.  Entanglement and non-markovianity of quantum evolutions. , 2009, Physical review letters.

[50]  Zach DeVito,et al.  Opt , 2017 .

[51]  Ting Yu,et al.  Crossover between non-Markovian and Markovian dynamics induced by a hierarchical environment , 2014, 1404.5280.

[52]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[53]  Wei-Min Zhang,et al.  Non-Markovian decoherence theory for a double-dot charge qubit , 2008, 0809.3490.

[54]  M B Plenio,et al.  Quantum speed limits in open system dynamics. , 2012, Physical review letters.

[55]  M. M. Taddei,et al.  Quantum speed limit for physical processes. , 2012, Physical review letters.

[56]  H. Fan,et al.  Environment-assisted non-Markovian speedup dynamics control , 2018 .

[57]  Z. Xu,et al.  Quantum Speed Limit of a Photon under Non-Markovian Dynamics , 2013, 1309.1391.

[58]  Guang-Can Guo,et al.  Experimental recovery of quantum correlations in absence of system-environment back-action , 2013, Nature Communications.

[59]  S. Reitzenstein,et al.  Observation of non-Markovian dynamics of a single quantum dot in a micropillar cavity , 2010, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[60]  Sebastian Deffner,et al.  Environment-Assisted Speed-up of the Field Evolution in Cavity Quantum Electrodynamics. , 2015, Physical review letters.

[61]  S. Wissmann,et al.  Optimal state pairs for non-Markovian quantum dynamics , 2012, 1209.4989.

[62]  Li Li,et al.  Canonical form of master equations and characterization of non-Markovianity , 2010, 1009.0845.

[63]  F. Nori,et al.  Atomic physics and quantum optics using superconducting circuits , 2011, Nature.

[64]  Tzyh Jong Tarn,et al.  Decoherence suppression via non-Markovian coherent feedback control , 2012 .

[65]  Zhong-Xiao Man,et al.  Non-Markovianity of a two-level system transversally coupled to multiple bosonic reservoirs , 2014 .

[66]  G. Adesso,et al.  Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence , 2013, 1304.1163.

[67]  F. Nori,et al.  Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems , 2012, 1204.2137.

[68]  S. Maniscalco,et al.  Comparative study of non-Markovianity measures in exactly solvable one- and two-qubit models , 2014, 1402.4975.

[69]  G. Guo,et al.  Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems , 2011, 1109.2677.

[70]  Wei Han,et al.  Role of initial system-bath correlation on coherence trapping , 2015, Scientific Reports.

[71]  D. Chruściński,et al.  Degree of non-Markovianity of quantum evolution. , 2013, Physical review letters.

[72]  S. Maniscalco,et al.  Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective , 2014, Scientific Reports.

[73]  S. Luo,et al.  Quantifying non-Markovianity via correlations , 2012 .

[74]  D. D. Awschalom,et al.  Supporting Online Material for Coherent Dynamics of a Single Spin Interacting with an Adjustable Spin Bath , 2008 .

[75]  Elsi-Mari Laine,et al.  Colloquium: Non-Markovian dynamics in open quantum systems , 2015, 1505.01385.

[76]  Guang-Can Guo,et al.  Measuring non-Markovianity of processes with controllable system-environment interaction , 2011, 1109.2438.

[77]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[78]  M. N. Makhonin,et al.  Nuclear spin effects in semiconductor quantum dots. , 2013, Nature materials.

[79]  W. L. Yang,et al.  Mechanism for quantum speedup in open quantum systems , 2016, 1602.07980.

[80]  Wei-Min Zhang,et al.  Decoherence suppression of open quantum systems through a strong coupling to non-Markovian reservoirs , 2011, 1111.5433.