Molybdenum carbide catalysts for water–gas shift

Molybdenum carbide (Mo2C) was demonstrated to be highly active for the water–gas shift of a synthetic steam reformer exhaust stream. This catalyst was more active than a commercial Cu–Zn–Al shift catalyst under the conditions employed (220–295°C and atmospheric pressure). In addition, Mo2C did not catalyze the methanation reaction. There was no apparent deactivation or modification of the structure during 48 h on‐stream. The results suggest that high surface area carbides are promising candidates for development as commercial water–gas shift catalysts.