The MIMO Wiretap Channel Decomposed

The problem of sending a secret message over the Gaussian multiple-input multiple-output (MIMO) wiretap channel is studied. While the capacity of this channel is known, it is not clear how to construct optimal coding schemes that achieve this capacity. In this paper, we use linear operations along with successive interference cancellation to attain effective parallel single-antenna wiretap channels. By using independent scalar Gaussian wiretap codebooks over the resulting parallel channels, the capacity of the MIMO wiretap channel is achieved. The derivation of the schemes is based upon joint triangularization of the channel matrices. We find that the same technique can be used to rederive capacity expressions for the MIMO wiretap channel in a way that is simple and closely connected to a transmission scheme. This technique allows to extend the previously proven strong security for scalar Gaussian channels to the MIMO case. We further consider the problem of transmitting confidential messages over a two-user broadcast MIMO channel. For that problem, we find that derivation of both the capacity and a transmission scheme is a direct corollary of the proposed analysis for the MIMO wiretap channel.

[1]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[2]  Yuval Kochman,et al.  Decomposing the MIMO wiretap channel , 2014, 2014 IEEE International Symposium on Information Theory.

[3]  Thomas M. Cover,et al.  Network Information Theory , 2001 .

[4]  Yuval Kochman,et al.  From ordinary AWGN codes to optimal MIMO wiretap schemes , 2014, 2014 IEEE Information Theory Workshop (ITW 2014).

[5]  Frédérique E. Oggier,et al.  Lattice Codes for the Wiretap Gaussian Channel: Construction and Analysis , 2016, IEEE Trans. Inf. Theory.

[6]  G. Ginis,et al.  A multi-user precoding scheme achieving crosstalk cancellation with application to DSL systems , 2000, Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154).

[7]  Charalambos D. Charalambous,et al.  Optimal Signaling for Secure Communications Over Gaussian MIMO Wiretap Channels , 2016, IEEE Transactions on Information Theory.

[8]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[9]  L. Goddard Information Theory , 1962, Nature.

[10]  Alexander Vardy,et al.  Achieving the secrecy capacity of wiretap channels using Polar codes , 2010, ISIT.

[11]  Byung-Jae Kwak,et al.  LDPC Codes for the Gaussian Wiretap Channel , 2009, IEEE Transactions on Information Forensics and Security.

[12]  A. Robert Calderbank,et al.  Applications of LDPC Codes to the Wiretap Channel , 2004, IEEE Transactions on Information Theory.

[13]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[14]  A. Horn On the eigenvalues of a matrix with prescribed singular values , 1954 .

[15]  A. J. Han Vinck,et al.  Wiretap Channel With Side Information , 2006, IEEE Transactions on Information Theory.

[16]  Babak Hassibi,et al.  An efficient square-root algorithm for BLAST , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[17]  G. Caire,et al.  On the multiple antenna broadcast channel , 2001, Conference Record of Thirty-Fifth Asilomar Conference on Signals, Systems and Computers (Cat.No.01CH37256).

[18]  Jian-Kang Zhang,et al.  Equal-diagonal QR decomposition and its application to precoder design for successive-cancellation detection , 2005, IEEE Transactions on Information Theory.

[19]  François Baccelli,et al.  Interference Networks With Point-to-Point Codes , 2011, IEEE Transactions on Information Theory.

[20]  Mattias Andersson,et al.  Coding for the Wiretap Channel , 2011 .

[21]  Max H. M. Costa,et al.  Writing on dirty paper , 1983, IEEE Trans. Inf. Theory.

[22]  H. Vincent Poor,et al.  Secrecy Capacity Region of a Multiple-Antenna Gaussian Broadcast Channel With Confidential Messages , 2007, IEEE Transactions on Information Theory.

[23]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas—Part II: The MIMOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[24]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[25]  Yuval Kochman,et al.  Joint Unitary Triangularization for MIMO Networks , 2012, IEEE Transactions on Signal Processing.

[26]  Reinaldo A. Valenzuela,et al.  V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel , 1998, 1998 URSI International Symposium on Signals, Systems, and Electronics. Conference Proceedings (Cat. No.98EX167).

[27]  Alicja Smoktunowicz,et al.  On Constructing Unit Triangular Matrices with Prescribed Singular Values , 2000, Computing.

[28]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[29]  John M. Cioffi,et al.  MMSE decision-feedback equalizers and coding. I. Equalization results , 1995, IEEE Trans. Commun..

[30]  Thomas M. Cover,et al.  Elements of Information Theory: Cover/Elements of Information Theory, Second Edition , 2005 .

[31]  Himanshu Tyagi,et al.  Explicit capacity-achieving coding scheme for the Gaussian wiretap channel , 2014, 2014 IEEE International Symposium on Information Theory.

[32]  François Baccelli,et al.  Interference Networks With Point-to-Point Codes , 2011, IEEE Trans. Inf. Theory.

[33]  Himanshu Tyagi,et al.  Semantically-Secure Coding Scheme Achieving the Capacity of a Gaussian Wiretap Channel , 2014, ArXiv.

[34]  Frédérique E. Oggier,et al.  The secrecy capacity of the MIMO wiretap channel , 2007, 2008 IEEE International Symposium on Information Theory.

[35]  Abbas El Gamal,et al.  Network Information Theory , 2021, 2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT).

[36]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas I: The MISOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[37]  Masahito Hayashi,et al.  Construction of wiretap codes from ordinary channel codes , 2010, 2010 IEEE International Symposium on Information Theory.

[38]  J. Leeuw Derivatives of Generalized Eigen Systems with Applications , 2007 .

[39]  Abbas El Gamal,et al.  Three-Receiver Broadcast Channels With Common and Confidential Messages , 2012, IEEE Transactions on Information Theory.

[40]  Shlomo Shamai,et al.  A Note on the Secrecy Capacity of the Multiple-Antenna Wiretap Channel , 2007, IEEE Transactions on Information Theory.

[41]  Z. Bai The CSD, GSVD, their Applications and Computations (cid:3) , 1992 .

[42]  Martin E. Hellman,et al.  The Gaussian wire-tap channel , 1978, IEEE Trans. Inf. Theory.

[43]  Uri Erez,et al.  On the Robustness of Lattice Interference Alignment , 2013, IEEE Transactions on Information Theory.

[44]  Shlomo Shamai,et al.  The Capacity Region of the Gaussian Multiple-Input Multiple-Output Broadcast Channel , 2006, IEEE Transactions on Information Theory.

[45]  Giuseppe Caire,et al.  Lattice coding and decoding achieve the optimal diversity-multiplexing tradeoff of MIMO channels , 2004, IEEE Transactions on Information Theory.

[46]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[47]  H. Weyl Inequalities between the Two Kinds of Eigenvalues of a Linear Transformation. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Ling Liu,et al.  Polar lattices for strong secrecy over the mod-Λ Gaussian wiretap channel , 2014, 2014 IEEE International Symposium on Information Theory.

[49]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[50]  C. Loan Generalizing the Singular Value Decomposition , 1976 .

[51]  Y. Jiang,et al.  Uniform channel decomposition for MIMO communications , 2004, Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004..

[52]  Shlomo Shamai,et al.  On the achievable throughput of a multiantenna Gaussian broadcast channel , 2003, IEEE Transactions on Information Theory.

[53]  Uri Erez,et al.  Joint Unitary Triangularization for Gaussian Multi-User MIMO Networks , 2015, IEEE Transactions on Information Theory.

[54]  Shlomo Shamai,et al.  Multiple-Input Multiple-Output Gaussian Broadcast Channels With Confidential Messages , 2009, IEEE Transactions on Information Theory.

[55]  Alexander Vardy,et al.  Semantic Security for the Wiretap Channel , 2012, CRYPTO.

[56]  G. Forney,et al.  Generalized Decision-Feedback Equalization for Packet Transmission with ISI and Gaussian Noise , 1997 .

[57]  Charalambos D. Charalambous,et al.  An Algorithm for Global Maximization of Secrecy Rates in Gaussian MIMO Wiretap Channels , 2015, IEEE Transactions on Communications.

[58]  A. J. Han Vinck,et al.  An achievable region for the Gaussian wiretap channel with side information , 2006, IEEE Transactions on Information Theory.

[59]  Shlomo Shamai,et al.  An MMSE Approach to the Secrecy Capacity of the MIMO Gaussian Wiretap Channel , 2009, 2009 IEEE International Symposium on Information Theory.

[60]  Matthieu R. Bloch,et al.  Strong Secrecy From Channel Resolvability , 2011, IEEE Transactions on Information Theory.

[61]  Yi Jiang,et al.  MIMO Transceiver Design via Majorization Theory , 2007, Found. Trends Commun. Inf. Theory.

[62]  Jian Li,et al.  The geometric mean decomposition , 2005 .

[63]  Bin Dai,et al.  Wiretap Channel With Side Information , 2006, ArXiv.

[64]  M. Saunders,et al.  Towards a Generalized Singular Value Decomposition , 1981 .