Estimation for the bivariate quantile varying coefficient model with application to diffusion tensor imaging data analysis.

Despite interest in the joint modeling of multiple functional responses such as diffusion properties in neuroimaging, robust statistical methods appropriate for this task are lacking. To address this need, we propose a varying coefficient quantile regression model able to handle bivariate functional responses. Our work supports innovative insights into biomedical data by modeling the joint distribution of functional variables over their domains and across clinical covariates. We propose an estimation procedure based on the alternating direction method of multipliers and propagation separation algorithms to estimate varying coefficients using a B-spline basis and an $L_2$ smoothness penalty that encourages interpretability. A simulation study and an application to a real-world neurodevelopmental data set demonstrates the performance of our model and the insights provided by modeling functional fractional anisotropy and mean diffusivity jointly and their association with gestational age and sex.

[1]  Pavlo Mozharovskyi,et al.  Tukey depth: linear programming and applications , 2016, 1603.00069.

[2]  Yanhua Wang,et al.  Regularized quantile regression under heterogeneous sparsity with application to quantitative genetic traits , 2015, Comput. Stat. Data Anal..

[3]  Wolfgang K. Härdle,et al.  Functional data analysis of generalized regression quantiles , 2015, Stat. Comput..

[4]  James G. Scott,et al.  Proximal Algorithms in Statistics and Machine Learning , 2015, ArXiv.

[5]  Hsing,et al.  Functional Data Analysis , 2015 .

[6]  Zhibiao Zhao,et al.  EFFICIENT REGRESSIONS VIA OPTIMALLY COMBINING QUANTILE INFORMATION , 2014, Econometric Theory.

[7]  Hongtu Zhu,et al.  Spatially Varying Coefficient Model for Neuroimaging Data With Jump Discontinuities , 2013, Journal of the American Statistical Association.

[8]  Runze Li,et al.  MULTIVARIATE VARYING COEFFICIENT MODEL FOR FUNCTIONAL RESPONSES. , 2012, Annals of statistics.

[9]  B. Grignon,et al.  Recent advances in medical imaging: anatomical and clinical applications , 2012, Surgical and Radiologic Anatomy.

[10]  Linglong Kong,et al.  Quantile tomography: using quantiles with multivariate data , 2008, Statistica Sinica.

[11]  Dinggang Shen,et al.  Multiscale adaptive regression models for neuroimaging data , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[12]  Arthur W Toga,et al.  Mean diffusivity and fractional anisotropy as indicators of disease and genetic liability to schizophrenia. , 2011, Journal of psychiatric research.

[13]  Martin Styner,et al.  FADTTS: Functional analysis of diffusion tensor tract statistics , 2011, NeuroImage.

[14]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[15]  Jianqing Fan,et al.  Penalized composite quasi‐likelihood for ultrahigh dimensional variable selection , 2009, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[16]  H. Bondell,et al.  Noncrossing quantile regression curve estimation. , 2010, Biometrika.

[17]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[18]  Martin Styner,et al.  Multivariate Varying Coefficient Models for DTI Tract Statistics , 2010, MICCAI.

[19]  Jianhui Zhou,et al.  Quantile regression in partially linear varying coefficient models , 2009, 0911.3501.

[20]  Karl J. Friston Modalities, Modes, and Models in Functional Neuroimaging , 2009, Science.

[21]  B. Mueller,et al.  Microstructural corpus callosum anomalies in children with prenatal alcohol exposure: an extension of previous diffusion tensor imaging findings. , 2009, Alcoholism, clinical and experimental research.

[22]  Linglong Kong On Multivariate Quantile Regression: Directional Approach and Application with Growth Charts , 2009 .

[23]  Z. Cai,et al.  Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models , 2008 .

[24]  J. Ibrahim,et al.  Statistical Analysis of Diffusion Tensors in Diffusion-Weighted Magnetic Resonance Imaging Data , 2007 .

[25]  Jin-Ting Zhang,et al.  Statistical inferences for functional data , 2007, 0708.2207.

[26]  V. Chernozhukov,et al.  QUANTILE AND PROBABILITY CURVES WITHOUT CROSSING , 2007, 0704.3649.

[27]  Ji Zhu,et al.  Quantile Regression in Reproducing Kernel Hilbert Spaces , 2007 .

[28]  Mi-Ok Kim,et al.  Quantile regression with varying coefficients , 2007, 0708.0471.

[29]  Jessica A. Turner,et al.  Imaging phenotypes and genotypes in schizophrenia , 2007, Neuroinformatics.

[30]  J. Polzehl,et al.  Propagation-Separation Approach for Local Likelihood Estimation , 2006 .

[31]  A. Pfefferbaum,et al.  Disruption of Brain White Matter Microstructure by Excessive Intracellular and Extracellular Fluid in Alcoholism: Evidence from Diffusion Tensor Imaging , 2005, Neuropsychopharmacology.

[32]  R. Koenker Quantile Regression: Name Index , 2005 .

[33]  Timothy M. Chan An optimal randomized algorithm for maximum Tukey depth , 2004, SODA '04.

[34]  Jianhua Z. Huang,et al.  Polynomial Spline Estimation and Inference for Varying Coefficient Models with Longitudinal Data , 2003 .

[35]  Jianhua Z. Huang,et al.  Varying‐coefficient models and basis function approximations for the analysis of repeated measurements , 2002 .

[36]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[37]  P. Basser,et al.  Water Diffusion Changes in Wallerian Degeneration and Their Dependence on White Matter Architecture , 2000 .

[38]  Zongwu Cai,et al.  Adaptive varying‐coefficient linear models , 2000 .

[39]  J. Foong,et al.  Neuropathological abnormalities of the corpus callosum in schizophrenia: a diffusion tensor imaging study , 2000, Journal of neurology, neurosurgery, and psychiatry.

[40]  Chin-Tsang Chiang,et al.  Asymptotic Confidence Regions for Kernel Smoothing of a Varying-Coefficient Model With Longitudinal Data , 1998 .

[41]  Peter Rousseeuw,et al.  Computing location depth and regression depth in higher dimensions , 1998, Stat. Comput..

[42]  J. Polzehl,et al.  Adaptive weights smoothing with applications to image restoration , 1998 .

[43]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[44]  R. Koenker,et al.  An interior point algorithm for nonlinear quantile regression , 1996 .

[45]  B. Silverman,et al.  Estimating the mean and covariance structure nonparametrically when the data are curves , 1991 .

[46]  Stanley R. Johnson,et al.  Varying Coefficient Models , 1984 .

[47]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[48]  J. Tukey Mathematics and the Picturing of Data , 1975 .

[49]  M. Hestenes Multiplier and gradient methods , 1969 .