暂无分享,去创建一个
[1] P. Paufler,et al. Quasicrystals and Geometry , 1997 .
[2] Robert E. Tarjan,et al. Three Partition Refinement Algorithms , 1987, SIAM J. Comput..
[3] Nicolas Ollinger,et al. Substitutions and Strongly Deterministic Tilesets , 2012, CiE.
[4] A S Kahr,et al. ENTSCHEIDUNGSPROBLEM REDUCED TO THE AEA CASE. , 1962, Proceedings of the National Academy of Sciences of the United States of America.
[5] Jarkko Kari. The Nilpotency Problem of One-Dimensional Cellular Automata , 1992, SIAM J. Comput..
[6] Antti Valmari. Simple Bisimilarity Minimization in O(m log n) Time , 2010, Fundam. Informaticae.
[7] Nicolas Ollinger. Two-by-Two Substitution Systems and the Undecidability of the Domino Problem , 2008, CiE.
[8] Gérard Cécé. Foundation for a series of efficient simulation algorithms , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[9] Zhi-Xiong Wen,et al. Some Properties of the Singular Words of the Fibonacci Word , 1994, Eur. J. Comb..
[10] Alexander Shen,et al. Fixed Point and Aperiodic Tilings , 2008, Developments in Language Theory.
[11] Lucian Ilie,et al. Reducing NFAs by invariant equivalences , 2003 .
[12] Jarkko Kari,et al. Deterministic Aperiodic Tile Sets , 1999 .
[13] Harry R. Lewis,et al. Unsolvable classes of quantificational formulas , 1979 .
[14] Leonid A. Levin. Aperiodic Tilings: Breaking Translational Symmetry , 2005, Comput. J..
[15] Victor Poupet. Yet Another Aperiodic Tile Set , 2010, JAC.
[16] Scott A. Smolka,et al. CCS expressions, finite state processes, and three problems of equivalence , 1983, PODC '83.
[17] A. Julien,et al. Combinatorics and topology of the Robinson tiling , 2012, 1203.1387.
[18] G. C. Shephard,et al. Tilings and patterns. W. H. Freeman and Co. Ltd., Oxford 1987. IX + 700 p., 1395 figs., price £ 54.95, ISBN 0–7167–1193–1 , 1991 .
[19] Hao Wang. Proving theorems by pattern recognition — II , 1961 .
[20] R. Robinson. Undecidability and nonperiodicity for tilings of the plane , 1971 .
[21] Robert L. Berger. The undecidability of the domino problem , 1966 .
[22] C. Goodman-Strauss. MATCHING RULES AND SUBSTITUTION TILINGS , 1998 .
[23] Hao Wang. Notes on a class of tiling problems , 1975 .
[24] Aimee S. A. Johnson,et al. Putting The Pieces Together: Understanding Robinson’s Nonperiodic Tilings , 1997 .
[25] Karel Culík,et al. An aperiodic set of 13 Wang tiles , 1996, Discret. Math..
[26] S. Mozes. Tilings, substitution systems and dynamical systems generated by them , 1989 .
[27] Bruno Poizat. Une théorie finiement axiomatisable et superstable , 1982 .
[28] Song-Sun Lin,et al. Nonemptiness problems of Wang tiles with three colors , 2014, Theor. Comput. Sci..
[29] Olivier Salon,et al. Quelles tuiles ! (Pavages apériodiques du plan et automates bidimensionnels) , 1989 .
[30] Ville Lukkarila. The 4-way deterministic tiling problem is undecidable , 2009, Theor. Comput. Sci..
[31] H. Hermes,et al. A Simplified Proof for the Unsolvability of the Decision Problem in the Case , 1971 .
[32] Hao Wang,et al. Proving theorems by pattern recognition I , 1960, Commun. ACM.
[33] Stål Aanderaa,et al. Linear Sampling and the forall exists forall Case of the Decision Problem , 1974, J. Symb. Log..
[34] H. Hermes. Entscheidungsproblem und Dominospiele , 1970 .
[35] John E. Hopcroft,et al. An n log n algorithm for minimizing states in a finite automaton , 1971 .
[36] Jarkko Kari,et al. A small aperiodic set of Wang tiles , 1996, Discret. Math..
[37] Peter Kulchyski. and , 2015 .
[38] Emmanuel Jeandel,et al. Fixed Parameter Undecidability for Wang Tilesets , 2012, AUTOMATA & JAC.
[39] L. Levin,et al. Local rules and global order, or aperiodic tilings , 2005 .
[40] Nicolas Ollinger,et al. Combinatorial Substitutions and Sofic Tilings , 2010, JAC.