Connexin43 confers Temozolomide resistance in human glioma cells by modulating the mitochondrial apoptosis pathway

[1]  S. Fulda,et al.  Smac mimetic sensitizes glioblastoma cells to Temozolomide-induced apoptosis in a RIP1- and NF-κB-dependent manner , 2013, Oncogene.

[2]  B. Meyer,et al.  Aldehyde dehydrogenase 1A1--a new mediator of resistance to temozolomide in glioblastoma. , 2012, Neuro-oncology.

[3]  L. Foster,et al.  Association of connexin43 with E3 ubiquitin ligase TRIM21 reveals a mechanism for gap junction phosphodegron control. , 2012, Journal of proteome research.

[4]  M. Mesnil,et al.  Opposing roles of connexin43 in glioma progression. , 2012, Biochimica et biophysica acta.

[5]  A. Harris,et al.  Gap junctions propagate opposite effects in normal and tumor testicular cells in response to cisplatin. , 2012, Cancer letters.

[6]  Corinne E Griguer,et al.  Acquisition of Chemoresistance in Gliomas Is Associated with Increased Mitochondrial Coupling and Decreased ROS Production , 2011, PloS one.

[7]  P. Kameritsch,et al.  The carboxyl tail of Cx43 augments p38 mediated cell migration in a gap junction-independent manner. , 2010, European journal of cell biology.

[8]  Aleksey A. Porollo,et al.  Mitochondria-specific transgenic overexpression of connexin-43 simulates preconditioning-induced cytoprotection of stem cells. , 2010, Cardiovascular research.

[9]  Yonghuan Jin,et al.  Activation of AMP-activated Protein Kinase by Temozolomide Contributes to Apoptosis in Glioblastoma Cells via p53 Activation and mTORC1 Inhibition* , 2010, The Journal of Biological Chemistry.

[10]  J. Sarkaria,et al.  Acquisition of Temozolomide Chemoresistance in Gliomas Leads to Remodeling of Mitochondrial Electron Transport Chain* , 2010, The Journal of Biological Chemistry.

[11]  Lei Shi,et al.  MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase-3 activity , 2010, Brain Research.

[12]  A. J. Vanisree,et al.  Naringenin promote apoptosis in cerebrally implanted C6 glioma cells , 2010, Molecular and Cellular Biochemistry.

[13]  B. Neyns,et al.  Dose‐dense temozolomide regimens , 2010, Cancer.

[14]  Mustapha Kandouz,et al.  Gap junctions and connexins as therapeutic targets in cancer , 2010, Expert opinion on therapeutic targets.

[15]  S. Cottin,et al.  Gemcitabine intercellular diffusion mediated by gap junctions: new implications for cancer therapy , 2010, Molecular Cancer.

[16]  C. Naus,et al.  The carboxy‐terminal tail of connexin43 gap junction protein is sufficient to mediate cytoskeleton changes in human glioma cells , 2010, Journal of cellular biochemistry.

[17]  C. Naus,et al.  Implications and challenges of connexin connections to cancer , 2010, Nature Reviews Cancer.

[18]  C. Laughton,et al.  Acquired Resistance to Temozolomide in Glioma Cell Lines: Molecular Mechanisms and Potential Translational Applications , 2010, Oncology.

[19]  Howard Colman,et al.  MGMT promoter methylation is predictive of response to radiotherapy and prognostic in the absence of adjuvant alkylating chemotherapy for glioblastoma. , 2010, Neuro-oncology.

[20]  H. Takeshima,et al.  Anti-glioma therapy with temozolomide and status of the DNA-repair gene MGMT. , 2009, Anticancer research.

[21]  A. Frati,et al.  Insights into pharmacotherapy of malignant glioma in adults , 2009, Expert opinion on pharmacotherapy.

[22]  Vera Rogiers,et al.  Ca(2+) regulation of connexin 43 hemichannels in C6 glioma and glial cells. , 2009, Cell calcium.

[23]  Stephen Yip,et al.  MSH6 Mutations Arise in Glioblastomas during Temozolomide Therapy and Mediate Temozolomide Resistance , 2009, Clinical Cancer Research.

[24]  G. Fròsina DNA Repair and Resistance of Gliomas to Chemotherapy and Radiotherapy , 2009, Molecular Cancer Research.

[25]  J. Villano,et al.  Temozolomide in malignant gliomas: current use and future targets , 2009, Cancer Chemotherapy and Pharmacology.

[26]  T. Kawase,et al.  Inhibition of c-Jun N-terminal kinase enhances temozolomide-induced cytotoxicity in human glioma cells , 2009, Journal of Neuro-Oncology.

[27]  Brett L Carlson,et al.  Induction of MGMT expression is associated with temozolomide resistance in glioblastoma xenografts. , 2009, Neuro-oncology.

[28]  S. Fulda,et al.  Identification of a novel switch in the dominant forms of cell adhesion-mediated drug resistance in glioblastoma cells , 2008, Oncogene.

[29]  H. Osswald,et al.  Alterations in S-adenosylhomocysteine metabolism decrease O6-methylguanine DNA methyltransferase gene expression without affecting promoter methylation. , 2008, Biochemical pharmacology.

[30]  C. James,et al.  Mechanisms of Chemoresistance to Alkylating Agents in Malignant Glioma , 2008, Clinical Cancer Research.

[31]  C. Naus,et al.  Connexin43 enhances glioma invasion by a mechanism involving the carboxy terminus , 2007, Glia.

[32]  S. Giardina,et al.  Connexin 43 confers resistance to hydrogen peroxide-mediated apoptosis. , 2007, Biochemical and biophysical research communications.

[33]  Gabriele Schackert,et al.  Long-term survival with glioblastoma multiforme. , 2007, Brain : a journal of neurology.

[34]  M. Weller,et al.  Apoptosis in malignant glioma cells triggered by the temozolomide-induced DNA lesion O6-methylguanine , 2007, Oncogene.

[35]  G. Sosinsky,et al.  Mutation of a Conserved Threonine in the Third Transmembrane Helix of α- and β-Connexins Creates a Dominant-negative Closed Gap Junction Channel* , 2006, Journal of Biological Chemistry.

[36]  M. Bennett,et al.  S-nitrosylation and permeation through connexin 43 hemichannels in astrocytes: induction by oxidant stress and reversal by reducing agents. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. Weller,et al.  O6‐methylguanine DNA methyltransferase and p53 status predict temozolomide sensitivity in human malignant glioma cells , 2006, Journal of neurochemistry.

[38]  M. Mesnil,et al.  Defective gap junctional intercellular communication in the carcinogenic process. , 2005, Biochimica et biophysica acta.

[39]  Martin J. van den Bent,et al.  Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. , 2005, The New England journal of medicine.

[40]  P. Lampe,et al.  The effects of connexin phosphorylation on gap junctional communication. , 2004, The international journal of biochemistry & cell biology.

[41]  C. Naus,et al.  Increased apoptosis and inflammation after focal brain ischemia in mice lacking connexin43 in astrocytes. , 2004, The American journal of pathology.

[42]  B. Giepmans Gap junctions and connexin-interacting proteins. , 2004, Cardiovascular research.

[43]  I. Germano,et al.  Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells , 2004, Cell Death and Differentiation.

[44]  R. Scott,et al.  Surgical Outcome following Resection of Contrast-Enhanced Pediatric Brainstem Gliomas , 2004, Pediatric Neurosurgery.

[45]  D. Segretain,et al.  Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. , 2004, Biochimica et biophysica acta.

[46]  J. Hervé,et al.  Diversity in protein-protein interactions of connexins: emerging roles. , 2004, Biochimica et biophysica acta.

[47]  D. Spray,et al.  Array analysis of gene expression in connexin-43 null astrocytes. , 2003, Physiological genomics.

[48]  Jerry M. Adams,et al.  Ways of dying: multiple pathways to apoptosis. , 2003, Genes & development.

[49]  M. Westphal,et al.  Cost of migration: invasion of malignant gliomas and implications for treatment. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[50]  David L. Paul,et al.  Beyond the gap: functions of unpaired connexon channels , 2003, Nature Reviews Molecular Cell Biology.

[51]  Raymond Sawaya,et al.  Optimizing outcomes with maximal surgical resection of malignant gliomas. , 2003, Cancer control : journal of the Moffitt Cancer Center.

[52]  T. Takano,et al.  Connexin Mediates Gap Junction-Independent Resistance to Cellular Injury , 2003, The Journal of Neuroscience.

[53]  J. Shim,et al.  A Potential Role for Cx43-Hemichannels in Staurosporin-Induced Apoptosis , 2003, Cell communication & adhesion.

[54]  J. Vanslyke,et al.  Dislocation and degradation from the ER are regulated by cytosolic stress , 2002, The Journal of cell biology.

[55]  X. Wang The expanding role of mitochondria in apoptosis. , 2001, Genes & development.

[56]  Ruo-Pan Huang,et al.  Enhanced apoptosis under low serum conditions in human glioblastoma cells by connexin 43 (Cx43) , 2001, Molecular carcinogenesis.

[57]  Michael E. Berens,et al.  Glioma Cell Motility is Associated with Reduced Transcription of Proapoptotic and Proliferation Genes: A cDNA Microarray Analysis , 2001, Journal of Neuro-Oncology.

[58]  A. Boynton,et al.  Connexin 43 (cx43) enhances chemotherapy‐induced apoptosis in human glioblastoma cells , 2001, International journal of cancer.

[59]  M. Berger,et al.  p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells. , 2001, Cancer research.

[60]  M. Sanderson,et al.  Propagation of intercellular calcium waves in C6 glioma cells transfected with connexins 43 or 32 , 2001, Microscopy research and technique.

[61]  P. Lampe,et al.  Regulation of gap junctions by phosphorylation of connexins. , 2000, Archives of biochemistry and biophysics.

[62]  Scar,et al.  Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. , 2000, The New England journal of medicine.

[63]  J. Rash,et al.  Connexins and gap junctions of astrocytes and oligodendrocytes in the CNS , 2000, Brain Research Reviews.

[64]  G. Goldberg,et al.  Selective transfer of endogenous metabolites through gap junctions composed of different connexins , 1999, Nature Cell Biology.

[65]  A. Fornace,et al.  Regulation of translation initiation following stress , 1999, Oncogene.

[66]  D. Goodenough,et al.  Diverse functions of vertebrate gap junctions. , 1998, Trends in cell biology.

[67]  A. Boynton,et al.  Reversion of the neoplastic phenotype of human glioblastoma cells by connexin 43 (cx43). , 1998, Cancer research.

[68]  M. Berens,et al.  Altered Gene Expression in Human Astrocytoma Cells Selected for Migration: I. Thromboxane Synthase , 1998, Journal of neuropathology and experimental neurology.

[69]  D. Agrawal,et al.  Morphological and biochemical characterization and analysis of apoptosis. , 1997, Journal of pharmacological and toxicological methods.

[70]  S. Korsmeyer,et al.  Molecular thanatopsis: a discourse on the BCL2 family and cell death. , 1996, Blood.

[71]  Xiaodong Wang,et al.  Induction of Apoptotic Program in Cell-Free Extracts: Requirement for dATP and Cytochrome c , 1996, Cell.

[72]  D. Laird,et al.  Gap junction turnover, intracellular trafficking, and phosphorylation of connexin43 in brefeldin A-treated rat mammary tumor cells , 1995, The Journal of cell biology.

[73]  C Haanen,et al.  A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. , 1995, Journal of immunological methods.

[74]  S. Korsmeyer,et al.  Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programed cell death , 1993, Cell.

[75]  K. Elisevich,et al.  In vivo growth of C6 glioma cells transfected with connexin43 cDNA. , 1992, Cancer research.

[76]  W. Loewenstein,et al.  Intercellular Communication and the Control of Tissue Growth: Lack of Communication between Cancer Cells , 1966, Nature.

[77]  L. Foster,et al.  Connexin multi-site phosphorylation: mass spectrometry-based proteomics fills the gap. , 2013, Biochimica et biophysica acta.

[78]  C. Naus,et al.  Connexin 43 hemichannels contribute to the propagation of apoptotic cell death in a rat C6 glioma cell model , 2009, Cell Death and Differentiation.

[79]  J. Uhm Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2009 .

[80]  G. Heusch,et al.  Mitochondrial connexin43 as a new player in the pathophysiology of myocardial ischaemia-reperfusion injury. , 2008, Cardiovascular research.

[81]  G. Sosinsky,et al.  Mutation of a conserved threonine in the third transmembrane helix of alpha- and beta-connexins creates a dominant-negative closed gap junction channel. , 2006, The Journal of biological chemistry.

[82]  M. Umeda,et al.  Cytotoxicity test with simplified crystal violet staining method using microtitre plates and its application to injection drugs. , 1989, Toxicology in vitro : an international journal published in association with BIBRA.