DNS of flow past a stationary and oscillating cylinder at Re=10000

[1]  Suchuan Dong,et al.  Multilevel Parallelization Models in CFD , 2004, J. Aerosp. Comput. Inf. Commun..

[2]  Turgut Sarpkaya,et al.  A critical review of the intrinsic nature of vortex-induced vibrations , 2004 .

[3]  S. A. Jordan Resolving Turbulent Wakes , 2003 .

[4]  P. Moin,et al.  NUMERICAL SIMULATION OF THE FLOW AROUND A CIRCULAR CYLINDER AT HIGH REYNOLDS NUMBER , 2003 .

[5]  Carl M. Larsen,et al.  Direct Numerical Simulation and Experimental Investigation on Suppression of Vortex Induced Vibrations of Circular Cylinders by Radial Water Jets , 2003 .

[6]  Jörg Franke,et al.  Large eddy simulation of the flow past a circular cylinder at ReD=3900 , 2002 .

[7]  Stephen A. Jordan,et al.  Investigation of the cylinder separated shear-layer physics by large-eddy simulation , 2002 .

[8]  S. Mittal,et al.  FLOW-INDUCED VIBRATIONS OF A LIGHT CIRCULAR CYLINDER AT REYNOLDS NUMBERS 103TO 104 , 2001 .

[9]  Charles H. K. Williamson,et al.  A complementary numerical and physical investigation of vortex-induced vibration , 2001 .

[10]  George Em Karniadakis,et al.  Vortex dislocations and force distribution of long flexible cylinders subjected to sheared flows , 2001 .

[11]  A. E. Holdø,et al.  Large Eddy Simulation of a Smooth Circular Cylinder Oscillating Normal to a Uniform Flow , 2000 .

[12]  M. Breuer A CHALLENGING TEST CASE FOR LARGE EDDY SIMULATION: HIGH REYNOLDS NUMBER CIRCULAR CYLINDER FLOW , 2000, Proceeding of First Symposium on Turbulence and Shear Flow Phenomena.

[13]  George Em Karniadakis,et al.  Dynamics and low-dimensionality of a turbulent near wake , 2000, Journal of Fluid Mechanics.

[14]  George Em Karniadakis,et al.  DNS-DERIVED FORCE DISTRIBUTION ON FLEXIBLE CYLINDERS SUBJECT TO VORTEX-INDUCED VIBRATION , 2000 .

[15]  P. Moin,et al.  Numerical studies of flow over a circular cylinder at ReD=3900 , 2000 .

[16]  George Em Karniadakis,et al.  Dynamics and flow structures in the turbulent wake of rigid and flexible cylinders subject to vortex-induced vibrations , 1999, Journal of Fluid Mechanics.

[17]  R. Henderson,et al.  A study of two-dimensional flow past an oscillating cylinder , 1999, Journal of Fluid Mechanics.

[18]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[19]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[20]  M. Breuer Numerical and modeling influences on large eddy simulations for the flow past a circular cylinder , 1998 .

[21]  R. Henderson Nonlinear dynamics and pattern formation in turbulent wake transition , 1997, Journal of Fluid Mechanics.

[22]  V. Kalro,et al.  Parallel 3D Computation of Unsteady Flows Around Circular Cylinders , 1997, Parallel Comput..

[23]  G. Karniadakis,et al.  A direct numerical simulation study of flow past a freely vibrating cable , 1997, Journal of Fluid Mechanics.

[24]  A. Prasad,et al.  The instability of the shear layer separating from a bluff body , 1997, Journal of Fluid Mechanics.

[25]  Xiao-Yun Lu,et al.  Calculation of the Timing of Vortex Formation from AN Oscillating Cylinder , 1996 .

[26]  Charles Dalton,et al.  Interactions of vortex-induced vibrations of a circular cylinder and a steady approach flow at a Reynolds number of 13,000 , 1996 .

[27]  S. Balachandar,et al.  Effect of three‐dimensionality on the lift and drag of nominally two‐dimensional cylinders , 1995 .

[28]  C. J. Apelt,et al.  Measurements of Fluctuating Pressures and Forces on a Circular Cylinder in the Reynolds Number Range 104 to 2·5 × 105 , 1993 .

[29]  R. Gopalkrishnan Vortex-induced forces on oscillating bluff cylinders , 1993 .

[30]  Peter W. Bearman,et al.  Aspect ratio and end plate effects on vortex shedding from a circular cylinder , 1992, Journal of Fluid Mechanics.

[31]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[32]  George Em Karniadakis,et al.  Chaotic transport in two‐ and three‐dimensional flow past a cylinder , 1991 .

[33]  Patrick Chassaing,et al.  Prediction of large‐scale transition features in the wake of a circular cylinder , 1990 .

[34]  Donald Rockwell,et al.  On vortex formation from a cylinder. Part 1. The initial instability , 1988, Journal of Fluid Mechanics.

[35]  M. Braza,et al.  Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder , 1986, Journal of Fluid Mechanics.

[36]  D. J. Tritton,et al.  A note on vortex streets behind circular cylinders at low Reynolds numbers , 1971, Journal of Fluid Mechanics.

[37]  Richard Evelyn Donohue Bishop,et al.  The lift and drag forces on a circular cylinder in a flowing fluid , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[38]  J. Michael R. Graham,et al.  Multi-modal Vortex-Induced Vibrations of a vertical riser pipe subject to a uniform current profile , 2004 .

[39]  Suchuan Dong,et al.  Dual-level parallelism for high-order CFD methods , 2004, Parallel Comput..

[40]  H. Al-Jamal,et al.  Vortex induced vibrations using Large Eddy Simulation at a moderate Reynolds number , 2004 .

[41]  C. Norberg Fluctuating lift on a circular cylinder: review and new measurements , 2003 .

[42]  Philippe R. Spalart,et al.  Detached-Eddy Simulations Past a Circular Cylinder , 2000 .

[43]  Arthur G. Kravchenko,et al.  B-spline methods and zonal grids for numerical simulations of turbulent flows , 1998 .

[44]  P. Moin,et al.  Suitability of upwind-biased finite difference schemes for large-eddy simulation of turbulent flows , 1997 .

[45]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[46]  P. Moin,et al.  Numerical experiments on the flow past A circular cylinder at sub-critical reynolds number , 1994 .

[47]  C. Norberg,et al.  Pressure Forces on a Circular Cylinder in Cross Flow , 1993 .