Stabilizing inverse problems by internal data. II: non-local internal data and generic linearized uniqueness

In the previous paper (Kuchment and Steinhauer in Inverse Probl 28(8):084007, 2012), the authors introduced a simple procedure that allows one to detect whether and explain why internal information arising in several novel coupled physics (hybrid) imaging modalities could turn extremely unstable techniques, such as optical tomography or electrical impedance tomography, into stable, good-resolution procedures. It was shown that in all cases of interest, the Fréchet derivative of the forward mapping is a pseudo-differential operator with an explicitly computable principal symbol. If one can set up the imaging procedure in such a way that the symbol is elliptic, this would indicate that the problem was stabilized. In the cases when the symbol is not elliptic, the technique suggests how to change the procedure (e.g., by adding extra measurements) to achieve ellipticity. In this article, we consider the situation arising in acousto-optical tomography (also called ultrasound modulated optical tomography), where the internal data available involves the Green’s function, and thus depends globally on the unknown parameter(s) of the equation and its solution. It is shown that the technique of (Kuchment and Steinhauer in Inverse Probl 28(8):084007, 2012) can be successfully adopted to this situation as well. A significant part of the article is devoted to results on generic uniqueness for the linearized problem in a variety of situations, including those arising in acousto-electric and quantitative photoacoustic tomography.

[1]  G. Bal,et al.  Inverse scattering and acousto-optic imaging. , 2009, Physical review letters.

[2]  Krysztof Maurin,et al.  Abbildungen vom Hilbert-Schmidtschen Typus und ihre Anwendungen. , 1961 .

[3]  Hao Gao,et al.  A Hybrid Reconstruction Method for Quantitative PAT , 2013, SIAM J. Imaging Sci..

[4]  L. Hörmander,et al.  On the Nash-Moser implicit function theorem , 1985 .

[5]  Michael E. Taylor,et al.  Partial Differential Equations II , 1996 .

[6]  Donald Clayton Spencer,et al.  Overdetermined systems of linear partial differential equations , 1969 .

[7]  Michael Taylor,et al.  Tools for Pde: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials , 2000 .

[8]  François Monard,et al.  Taming unstable inverse problems Mathematical routes toward high-resolution medical imaging modalities , 2012 .

[9]  G. Bal,et al.  Inverse diffusion problems with redundant internal information , 2011, 1106.4277.

[10]  J. Lions,et al.  Lectures on elliptic partial differential equations , 1957 .

[11]  G. Alessandrini Global stability for a coupled physics inverse problem , 2014, 1404.1275.

[12]  R. Laugesen Injectivity can fail for higher-dimensional harmonic extensions , 1996 .

[13]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[14]  K. Hoffmann,et al.  Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography , 2014 .

[15]  G. Alberti On local constraints and regularity of PDE in electromagnetics. Applications to hybrid imaging inverse problems , 2014 .

[16]  Lihong V. Wang,et al.  Biomedical Optics: Principles and Imaging , 2007 .

[17]  Tosio Kato Perturbation theory for linear operators , 1966 .

[18]  P. Gérard,et al.  Implicit function theorems , 2007 .

[19]  S. Lang Introduction to Differentiable Manifolds , 1964 .

[20]  A. Tamasan,et al.  Stable reconstruction of regular 1-Harmonic maps with a given trace at the boundary , 2015 .

[21]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .

[22]  G. Bal,et al.  Inverse anisotropic diffusion from power density measurements in two dimensions , 2011, 1110.4606.

[23]  O. Scherzer,et al.  The Levenberg-Marquardt Iteration for Numerical Inversion of the Power Density Operator , 2012, 1211.6034.

[24]  G. Bal Hybrid inverse problems and redundant systems of partial differential equations , 2012, 1210.0265.

[25]  S. G. Krein,et al.  Linear Equations in Banach Spaces , 1982 .

[26]  P. Dudnikov,et al.  Linear Overdetermined Systems of Partial Differential Equations. Initial and Initial-Boundary Value Problems , 1996 .

[27]  G. Bal,et al.  Inverse anisotropic conductivity from internal current densities , 2013, 1303.6665.

[28]  Louis Nirenberg,et al.  Variational and topological methods in nonlinear problems , 1981 .

[29]  Giovanni S. Alberti,et al.  Enforcing Local Non-Zero Constraints in PDEs and Applications to Hybrid Imaging Problems , 2014, 1406.3248.

[30]  Carlos Montalto Conductivity Recovery from One Component of the Current Density , 2014 .

[31]  Simon R. Arridge,et al.  Multiple Illumination Quantitative Photoacoustic Tomography using Transport and Diffusion Models , 2011 .

[32]  G. Bal Cauchy problem for Ultrasound Modulated EIT , 2012, 1201.0972.

[33]  Guillaume Bal,et al.  Explicit Reconstructions in QPAT, QTAT, TE, and MRE , 2012, 1202.3117.

[34]  Guillaume Bal,et al.  Multi-source quantitative photoacoustic tomography in a diffusive regime , 2011 .

[35]  G. Bal,et al.  Hybrid inverse problems for a system of Maxwell’s equations , 2013, 1308.5439.

[36]  Otmar Scherzer,et al.  Stability in the linearized problem of quantitative elastography , 2014, 1406.0291.

[37]  G. Bal,et al.  Inverse Anisotropic Conductivity from Power Densities in Dimension n ≥ 3 , 2012, 1208.6029.

[38]  V. Solonnikov Overdetermined elliptic boundary-value problems , 1973 .

[39]  Peter Kuchment,et al.  Mathematics of Hybrid Imaging: A Brief Review , 2011, 1107.2447.

[40]  Guillaume Bal,et al.  Ultrasound-modulated bioluminescence tomography. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[42]  Habib Ammari,et al.  Stability Analysis for Magnetic Resonance Elastography , 2014, 1409.5138.

[43]  Peter Kuchment,et al.  2D and 3D reconstructions in acousto-electric tomography , 2010, 1011.3059.

[44]  G. Alessandrini,et al.  Univalent Σ-harmonic mappings: connections with quasiconformal mappings , 2003 .

[45]  Peter Kuchment,et al.  The Radon Transform and Medical Imaging , 2014, CBMS-NSF regional conference series in applied mathematics.

[46]  Plamen Stefanov,et al.  Linearizing non-linear inverse problems and an application to inverse backscattering , 2008, 0809.0270.

[47]  Otmar Scherzer,et al.  Impedance-Acoustic Tomography , 2008, SIAM J. Appl. Math..

[48]  O. Scherzer,et al.  Hybrid tomography for conductivity imaging , 2011, 1112.2958.

[49]  Jérôme Fehrenbach,et al.  Imaging by Modification: Numerical Reconstruction of Local Conductivities from Corresponding Power Density Measurements , 2009, SIAM J. Imaging Sci..

[50]  Carlos Montalto,et al.  Stability of coupled-physics inverse problems with one internal measurement , 2013, 1306.1978.

[51]  Peter Kuchment,et al.  Stabilizing inverse problems by internal data , 2011, 1110.1819.

[52]  P. Kuchment,et al.  BANACH BUNDLES AND LINEAR OPERATORS , 1975 .

[53]  Johann Veras Electrical Conductivity Imaging via Boundary Value Problems for the 1-Laplacian , 2014 .

[54]  Gunther Uhlmann,et al.  Inverse Problems and Applications: Inside Out II , 2013 .

[55]  Guillaume Bal,et al.  Local inversions in ultrasound-modulated optical tomography , 2013, 1303.5178.

[56]  Eric Bonnetier,et al.  Electrical Impedance Tomography by Elastic Deformation , 2008, SIAM J. Appl. Math..

[57]  G. Bal,et al.  Inverse diffusion from knowledge of power densities , 2011, 1110.4577.

[58]  Guillaume Bal,et al.  Quantitative thermo-acoustics and related problems , 2011 .

[59]  Guillaume Bal,et al.  Inverse diffusion theory of photoacoustics , 2009, 0910.2503.

[60]  Guillaume Bal,et al.  Reconstruction of Coefficients in Scalar Second‐Order Elliptic Equations from Knowledge of Their Solutions , 2011, 1111.5051.

[61]  V. Arnold,et al.  Singularities of Differentiable Maps, Volume 1 , 2012 .

[62]  Louis Nirenberg,et al.  An abstract form of the nonlinear Cauchy-Kowalewski theorem , 1972 .

[63]  Josselin Garnier,et al.  Resolution and stability analysis in acousto-electric imaging , 2012 .

[64]  Wolfgang Bangerth,et al.  Reconstructions in ultrasound modulated optical tomography , 2009, 0910.2748.

[65]  G. Bal,et al.  Linearized internal functionals for anisotropic conductivities , 2013, 1302.3354.