Data-driven robotic sampling for marine ecosystem monitoring

Robotic sampling is attractive in many field robotics applications that require persistent collection of physical samples for ex-situ analysis. Examples abound in the earth sciences in studies involving the collection of rock, soil, and water samples for laboratory analysis. In our test domain, marine ecosystem monitoring, detailed understanding of plankton ecology requires laboratory analysis of water samples, but predictions using physical and chemical properties measured in real-time by sensors aboard an autonomous underwater vehicle (AUV) can guide sample collection decisions. In this paper, we present a data-driven and opportunistic sampling strategy to minimize cumulative regret for batches of plankton samples acquired by an AUV over multiple surveys. Samples are labeled at the end of each survey, and used to update a probabilistic model that guides sampling during subsequent surveys. During a survey, the AUV makes irrevocable sample collection decisions online for a sequential stream of candidates, with no knowledge of the quality of future samples. In addition to extensive simulations using historical field data, we present results from a one-day field trial where beginning with a prior model learned from data collected and labeled in an earlier campaign, the AUV collected water samples with a high abundance of a pre-specified planktonic target. This is the first time such a field experiment has been carried out in its entirety in a data-driven fashion, in effect “closing the loop” on a significant and relevant ecosystem monitoring problem while allowing domain experts (marine ecologists) to specify the mission at a relatively high level.

[1]  Morteza Zadimoghaddam,et al.  Submodular secretary problem and extensions , 2013, TALG.

[2]  K. Rajan,et al.  An Online Utility-Based Approach for Sampling Dynamic Ocean Fields , 2012, IEEE Journal of Oceanic Engineering.

[3]  Stephen M. Rock,et al.  Sonar-based iceberg-relative navigation for autonomous underwater vehicles , 2011 .

[4]  F. Py,et al.  In Situ Analysis for Intelligent Control , 2007, OCEANS 2007 - Europe.

[5]  James G. Bellingham,et al.  Boundary influences on HAB phytoplankton ecology in a stratification-enhanced upwelling shadow , 2014 .

[6]  Fabio Tozeto Ramos,et al.  Bayesian Fusion for Multi-Modal Aerial Images , 2013, Robotics: Science and Systems.

[7]  Gaurav S. Sukhatme,et al.  Coordinated sampling of dynamic oceanographic features with underwater vehicles and drifters , 2012, Int. J. Robotics Res..

[8]  Russ E. Davis,et al.  Drifter observations of coastal surface currents during CODE: The method and descriptive view , 1985 .

[9]  Wen Long,et al.  Predicting potentially toxigenic Pseudo-nitzschia blooms in the Chesapeake Bay , 2010 .

[10]  Gaurav S. Sukhatme,et al.  Optimizing waypoints for monitoring spatiotemporal phenomena , 2013, Int. J. Robotics Res..

[11]  R. Lumpkin,et al.  Measuring surface currents with Surface Velocity Program drifters : the instrument , its data , and some recent results , 2022 .

[12]  Andrew M. Fischer,et al.  Influences of upwelling and downwelling winds on red tide bloom dynamics in Monterey Bay, California , 2009 .

[13]  Gaurav S. Sukhatme,et al.  Call and response: experiments in sampling the environment , 2004, SenSys '04.

[14]  James G. Bellingham Autonomous Ocean Sampling Networks , 2006 .

[15]  J. Ryan,et al.  Distributions of invertebrate larvae and phytoplankton in a coastal upwelling system retention zone and peripheral front , 2014 .

[16]  Gaurav S. Sukhatme,et al.  Simultaneous Tracking and Sampling of Dynamic Oceanographic Features with Autonomous Underwater Vehicles and Lagrangian Drifters , 2010, ISER.

[17]  Harris David,et al.  A statistical explanation of MaxEnt for ecologists , 2013 .

[18]  K. H. Low,et al.  Multi-robot adaptive exploration and mapping for environmental sensing applications , 2009 .

[19]  Gaurav S. Sukhatme,et al.  USC CINAPS Builds bridges : observing and monitoring the southern california bight , 2010 .

[20]  Ari K. Jónsson,et al.  Activity Planning for the Mars Exploration Rovers , 2005, ICAPS.

[21]  J. Harvey,et al.  A 96-well plate format for detection of marine zooplankton with the sandwich hybridization assay. , 2014, Methods in molecular biology.

[22]  Andreas Krause,et al.  Efficient Informative Sensing using Multiple Robots , 2014, J. Artif. Intell. Res..

[23]  H. Zhang,et al.  OurOcean - An Integrated Solution to Ocean Monitoring and Forecasting , 2006, OCEANS 2006.

[24]  James G. Bellingham,et al.  Optimizing AUV oceanographic surveys , 1996, Proceedings of Symposium on Autonomous Underwater Vehicle Technology.

[25]  Gregory Dudek,et al.  Multi-domain monitoring of marine environments using a heterogeneous robot team , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Gaurav S. Sukhatme,et al.  Planning and Implementing Trajectories for Autonomous Underwater Vehicles to Track Evolving Ocean Processes Based on Predictions from a Regional Ocean Model , 2010, Int. J. Robotics Res..

[27]  Andreas Krause,et al.  Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting , 2009, IEEE Transactions on Information Theory.

[28]  J. Ryan,et al.  Robotic sampling, in situ monitoring and molecular detection of marine zooplankton , 2012 .

[29]  Sebastian G. Elbaum,et al.  On crop height estimation with UAVs , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[31]  Pratap Tokekar,et al.  Sensor Planning for a Symbiotic UAV and UGV System for Precision Agriculture , 2016, IEEE Trans. Robotics.

[32]  R Sullivan,et al.  The Spirit Rover's Athena science investigation at Gusev Crater, Mars. , 2004, Science.

[33]  Andreas Krause,et al.  Parallelizing Exploration-Exploitation Tradeoffs with Gaussian Process Bandit Optimization , 2012, ICML.

[34]  Porter Hoagland,et al.  Estimated Annual Economic Impacts from Harmful Algal Blooms (HABs) in the United States , 2000 .

[35]  Jon Rigelsford,et al.  Modelling and Control of Robot Manipulators , 2000 .

[36]  Pratap Tokekar,et al.  A robotic system for monitoring carp in Minnesota lakes , 2010, J. Field Robotics.

[37]  Jnaneshwar Das,et al.  An On-line Utility based Multi-criteria Approach for Sampling Dynamic Ocean Fields , 2012 .

[38]  Gaurav S. Sukhatme,et al.  Adaptive Sampling for Estimating a Scalar Field using a Robotic Boat and a Sensor Network , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[39]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[40]  Maxim A. Batalin,et al.  NIMS-AQ: A novel system for autonomous sensing of aquatic environments , 2008, 2008 IEEE International Conference on Robotics and Automation.

[41]  Andreas Krause,et al.  Near-optimal Batch Mode Active Learning and Adaptive Submodular Optimization , 2013, ICML.

[42]  A Franchi,et al.  Distributed target localization and encircling with a multi-robot system , 2011 .

[43]  Francis R. Bach,et al.  Learning with Submodular Functions: A Convex Optimization Perspective , 2011, Found. Trends Mach. Learn..

[44]  Csaba Szepesvári,et al.  Exploration-exploitation tradeoff using variance estimates in multi-armed bandits , 2009, Theor. Comput. Sci..

[45]  Alistair Reid,et al.  1-Point RANSAC for extended Kalman filtering: Application to real-time structure from motion and visual odometry , 2010 .

[46]  J. Bresina,et al.  MAPGEN : mixed initiative planning and scheduling for the Mars '03 MER mission , 2003 .

[47]  Gaurav S. Sukhatme,et al.  Landing on a Moving Target Using an Autonomous Helicopter , 2003, FSR.

[48]  Francisco P. Chavez,et al.  Moorings and Drifters for Real-Time Interdisciplinary Oceanography , 1997 .

[49]  Christopher Kitts,et al.  Entrapment/escorting and patrolling missions in multi-robot cluster space control , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[50]  R. McEwen,et al.  Autonomous detection and sampling of water types and fronts in a coastal upwelling system by an autonomous underwater vehicle , 2012 .

[51]  Young-Ho Kim,et al.  Spatial Interpolation for Robotic Sampling: Uncertainty with Two Models of Variance , 2012, ISER.

[52]  David S. Wettergreen,et al.  Long-Distance Autonomous Survey and Mapping in the Robotic Investigation of Life in the Atacama Desert , 2008 .

[53]  Richard W. Hanson,et al.  Robotics in Hostile Environments , 1983 .

[54]  Terrence Fong,et al.  Robotic Follow-Up for Human Exploration , 2010 .

[55]  Raphael M. Kudela,et al.  Development of a logistic regression model for the prediction of toxigenic Pseudo-nitzschia blooms in Monterey Bay, California. , 2009 .

[56]  Fabio Tozeto Ramos,et al.  Learning Non-Stationary Space-Time Models for Environmental Monitoring , 2012, AAAI.

[57]  Eric W. Frew,et al.  Cooperative Stand-off Tracking of Moving Targets by a Team of Autonomous Aircraft , 2005 .

[58]  Andreas Krause,et al.  Gaussian Process Bandits without Regret: An Experimental Design Approach , 2009, ArXiv.

[59]  Kayo Ide,et al.  Using flow geometry for drifter deployment in Lagrangian data assimilation , 2008 .

[60]  Frederic Py,et al.  A systematic agent framework for situated autonomous systems , 2010, AAMAS.

[61]  Naomi Ehrich Leonard,et al.  Control of coordinated patterns for ocean sampling , 2007, Int. J. Control.

[62]  Gaurav S. Sukhatme,et al.  Towards marine bloom trajectory prediction for AUV mission planning , 2010, 2010 IEEE International Conference on Robotics and Automation.

[63]  K. Rajan,et al.  Mobile autonomous process sampling within coastal ocean observing systems , 2010 .

[64]  A. Mariano,et al.  Assimilation of drifter observations for the reconstruction of the Eulerian circulation field , 2003 .

[65]  James G. Bellingham,et al.  Performance metrics for oceanographic surveys with autonomous underwater vehicles , 2001 .

[66]  Gaurav S. Sukhatme,et al.  Autonomous Underwater Vehicle trajectory design coupled with predictive ocean models: A case study , 2010, 2010 IEEE International Conference on Robotics and Automation.

[67]  M. Brzezinski,et al.  Empirical models of toxigenic Pseudo-nitzschia blooms: Potential use as a remote detection tool in the Santa Barbara Channel , 2009 .

[68]  Hugh F. Durrant-Whyte,et al.  Modeling and decision making in spatio-temporal processes for environmental surveillance , 2010, 2010 IEEE International Conference on Robotics and Automation.

[69]  Gaurav S. Sukhatme,et al.  Adaptive sampling for environmental robotics , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[70]  Andrew M. Fischer,et al.  Coastal Ocean Physics and Red Tides: An Example from Monterey Bay, California , 2005 .

[71]  Naomi Ehrich Leonard,et al.  Preparing to predict: The Second Autonomous Ocean Sampling Network (AOSN-II) experiment in the Monterey Bay , 2009 .

[72]  Ali Jalali,et al.  Hybrid Batch Bayesian Optimization , 2012, ICML.

[73]  James G Bellingham,et al.  Design and Tests of an Adaptive Triggering Method for Capturing Peak Samples in a Thin Phytoplankton Layer by an Autonomous Underwater Vehicle , 2010, IEEE Journal of Oceanic Engineering.

[74]  Roland Siegwart,et al.  Autonomous Inland Water Monitoring: Design and Application of a Surface Vessel , 2012, IEEE Robotics & Automation Magazine.

[75]  Kian Hsiang Low,et al.  Information-Theoretic Approach to Efficient Adaptive Path Planning for Mobile Robotic Environmental Sensing , 2009, ICAPS.

[76]  James G. Bellingham,et al.  Error Analysis and Sampling Strategy Design for Using Fixed or Mobile Platforms to Estimate Ocean Flux , 2010 .

[77]  Geoffrey A. Hollinger,et al.  Active planning for underwater inspection and the benefit of adaptivity , 2012, Int. J. Robotics Res..

[78]  Mac Schwager,et al.  Distributed robotic sensor networks: An information-theoretic approach , 2012, Int. J. Robotics Res..

[79]  Nicole Immorlica,et al.  Online auctions and generalized secretary problems , 2008, SECO.

[80]  Gregory Dudek,et al.  Optimal Online Data Sampling or How to Hire the Best Secretaries , 2009, 2009 Canadian Conference on Computer and Robot Vision.

[81]  Gaurav S. Sukhatme,et al.  Trajectory Design for Autonomous Underwater Vehicles Based on Ocean Model Predictions for Feature Tracking , 2009, FSR.

[82]  Thomas S. Ferguson,et al.  Who Solved the Secretary Problem , 1989 .

[83]  Frederic Py,et al.  Adaptive Control for Autonomous Underwater Vehicles , 2008, AAAI.

[84]  Andreas Krause,et al.  Nonmyopic active learning of Gaussian processes: an exploration-exploitation approach , 2007, ICML '07.

[85]  Alexander F. Shchepetkin,et al.  The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model , 2005 .

[86]  C. Guestrin,et al.  Near-optimal sensor placements: maximizing information while minimizing communication cost , 2006, 2006 5th International Conference on Information Processing in Sensor Networks.

[87]  David M. Fratantoni,et al.  Multi-AUV Control and Adaptive Sampling in Monterey Bay , 2006, IEEE Journal of Oceanic Engineering.

[88]  Frederic Py,et al.  A deliberative architecture for AUV control , 2008, 2008 IEEE International Conference on Robotics and Automation.