Cephalopod Brains: An Overview of Current Knowledge to Facilitate Comparison With Vertebrates

Cephalopod and vertebrate neural-systems are often highlighted as a traditional example of convergent evolution. Their large brains, relative to body size, and complexity of sensory-motor systems and behavioral repertoires offer opportunities for comparative analysis. Despite various attempts, questions on how cephalopod ‘brains’ evolved and to what extent it is possible to identify a vertebrate-equivalence, assuming it exists, remain unanswered. Here, we summarize recent molecular, anatomical and developmental data to explore certain features in the neural organization of cephalopods and vertebrates to investigate to what extent an evolutionary convergence is likely. Furthermore, and based on whole body and brain axes as defined in early-stage embryos using the expression patterns of homeodomain-containing transcription factors and axonal tractography, we describe a critical analysis of cephalopod neural systems showing similarities to the cerebral cortex, thalamus, basal ganglia, midbrain, cerebellum, hypothalamus, brain stem, and spinal cord of vertebrates. Our overall aim is to promote and facilitate further, hypothesis-driven, studies of cephalopod neural systems evolution.

[1]  J. Young Cephalopoda , 1871, Transactions of the Glasgow Geological Society.

[2]  A. Packard Aspects of the Body in Vertebrates and Arthropods , 1884, The American Naturalist.

[3]  J. Young Memoirs: On the Cytology of the Neurons of Cephalopods , 1932 .

[4]  John Zachary Young,et al.  Fused Neurons and Synaptic Contacts in the Giant Nerve Fibres of Cephalopods , 1939 .

[5]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[6]  B. Boycott,et al.  A memory system in Octopus vulgaris Lamarck , 1955, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[7]  M. Wells >A Touch-Learning Centre in Octopus , 1959 .

[8]  J. Gray Mechanically excitable receptor units in the mantle of the octopus and their connexions , 1960, The Journal of physiology.

[9]  B. Boycott The functional organization of the brain of the cuttlefish Sepia officinalis , 1961, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[10]  J. Young LEARNING AND DISCRIMINATION IN THE OCTOPUS , 1961, Biological reviews of the Cambridge Philosophical Society.

[11]  H Maldonado,et al.  The visual attack learning system in Octopus vulgaris. , 1963, Journal of theoretical biology.

[12]  J. Young The central nervous system of Nautilus , 1965, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[13]  J. Young The Croonian Lecture, 1965 - The organization of a memory system , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[14]  R. Nishioka,et al.  Survey of evidence for neurosecretion in gastropod molluscs. , 1966, American zoologist.

[15]  J. Messenger The effects on locomotion of lesions to the visuo-motor system in Octopus , 1967, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[16]  J. Messenger The peduncle lobe: a visuo-motor centre in octopus , 1967, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[17]  M. Wells,et al.  Pituitary Analogue in the Octopus , 1969, Nature.

[18]  E R Kandel,et al.  The functional organization of invertebrate ganglia. , 1970, Annual review of physiology.

[19]  A. Packard,et al.  Relative growth, nucleic acid content and cell numbers of the brain in Octopus vulgaris (Lamarck). , 1970, The Journal of experimental biology.

[20]  J. Young Neurovenous tissues in cephalopods. , 1970, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[21]  J. Young The organization of a cephalopod ganglion. , 1972, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[22]  W. Riss,et al.  Levels of function and their representation in the vertebrate thalamus. , 1972, Brain, behavior and evolution.

[23]  D. Newth THE ANATOMY OF THE NERVOUS SYSTEM OF OCTOPUS VULGARIS , 1972 .

[24]  A. Packard,et al.  CEPHALOPODS AND FISH: THE LIMITS OF CONVERGENCE , 1972 .

[25]  John Crittenden Clymer A computer simulation model of attack-learning behavior in the octopus. , 1973 .

[26]  M. J. Hobbs,et al.  A cephalopod cerebellum. , 1973, Brain research.

[27]  J. Young,et al.  The central nervous system of Loligo. I. The optic lobe. , 1974, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[28]  J. Z. YOUNG,et al.  The ‘cerebellum’ and the control of eye movements in cephalopods , 1976, Nature.

[29]  J. Young The nervous system of Loligo. II. Suboesophageal centres. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[30]  R. Chichery,et al.  Motor and behavioural responses obtained by stimulation with chronic electrodes of the optic lobe ofSepia officinalis , 1976, Brain Research.

[31]  R. Chichery,et al.  Motor and behavioral responses obtained by stimulation with chronic electrodes of the optic lobe of Sepia officinalis. , 1976, Brain research.

[32]  J. Young Brain, behaviour and evolution of cephalopods , 1977 .

[33]  P. Woodhams The ultrastructure of a cerebellar analogue in octopus , 1977, The Journal of comparative neurology.

[34]  J. Eccles An instruction-selection theory of learning in the cerebellar cortex , 1977, Brain Research.

[35]  J. Young The nervous system of Loligo, III. Higher motor centres: the basal supraoesophageal lobes , 1977 .

[36]  F. Seidel,et al.  Morphogenese der Tiere , 1978 .

[37]  S. Zottoli Comparison of mauthner cell size in teleosts , 1978, The Journal of comparative neurology.

[38]  E. Olmo,et al.  Excess DNA in the nuclei of the subseophagel region of octopus brain , 1979, The Journal of comparative neurology.

[39]  E. Kandel Behavioral biology of Aplysia : a contribution to the comparative study of opisthobranch molluscs , 1979 .

[40]  J. Messenger The nervous system of Loligo IV. The peduncle and olfactory lobes , 1979 .

[41]  J. Young The Nervous System of Loligo: V. The Vertical Lobe Complex , 1979 .

[42]  E. Monsell Cobalt and horseradish peroxidase tracer studies in the stellate ganglion of octopus , 1980, Brain Research.

[43]  W. Saidel,et al.  Evidence for visual mapping in the peduncle lobe of octopus , 1981, Neuroscience Letters.

[44]  W. Saidel,et al.  Connections of the octopus optic lobe: An HRP study , 1982, The Journal of comparative neurology.

[45]  G. Edelman Group selection and phasic reentrant signaling a theory of higher brain function , 1982 .

[46]  J. Young,et al.  Central Pathways of the Nerves of the Arms and Mantle of Octopus , 1985 .

[47]  F. Schuster,et al.  Morphological response of cultured cells to Naegleria amoeba cytopathogenic material. , 1985, Journal of cell science.

[48]  H. Pinsker,et al.  Localization and stimulation of chromatophore motoneurones in the brain of the squid, Lolliguncula brevis. , 1986, The Journal of experimental biology.

[49]  R. Miledi,et al.  The form and dimensions of the giant synapse of squids , 1986 .

[50]  John Zachary Young,et al.  Quantitative differences among the brains of cephalopods , 1987 .

[51]  M. Chichery,et al.  The anterior basal lobe and control of prey-capture in the cuttlefish (Sepia officinalis) , 1987, Physiology & Behavior.

[52]  R. A. Davidoff Neural Control of Rhythmic Movements in Vertebrates , 1988, Neurology.

[53]  W. Gilly,et al.  Jet-propelled escape in the squid Loligo opalescens: concerted control by giant and non-giant motor axon pathways. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[54]  I. Gleadall Higher Motor Function in the Brain of Octopus : the Anterior Basal Lobe and its Analogies with the Vertebrate Basal Ganglia , 1990 .

[55]  J. Young Computation in the Learning System of Cephalopods. , 1991, The Biological bulletin.

[56]  J. Fetcho Spinal Network of the Mauthner Cell (Part 1 of 2) , 1991 .

[57]  Catherine E. Myers Delay learning in artificial neural networks , 1992 .

[58]  G. Haszprunar The first molluscs ‐ small animals , 1992 .

[59]  J. Messenger,et al.  Distribution of GABA-like immunoreactivity in the octopus brain , 1993, Brain Research.

[60]  Psyche H. Lee,et al.  Carbocyanine dye labeling reveals a new motor nucleus in octopus brain , 1993, The Journal of comparative neurology.

[61]  M. Benton Molluscca: Amphineura and 'Monoplacophora' , 1993 .

[62]  J. Rubenstein,et al.  The embryonic vertebrate forebrain: the prosomeric model. , 1994, Science.

[63]  J. Young,et al.  Multiple matrices in the memory system of Octopus , 1995 .

[64]  Jennifer A. Mather,et al.  Cognition in cephalopods , 1995 .

[65]  Lars Orrhage On the Innervation and Homologues of the Anterior End Appendages of the Eunicea (Polychaeta), with a Tentative Outline of the Fundamental Constitution of the Cephalic Nervous System of the Polychaetes , 1995 .

[66]  B. Budelmann The cephalopod nervous system: What evolution has made of the molluscan design , 1995 .

[67]  Khashayar Farsad,et al.  Comparative Vertebrate Neuroanatomy: Evolution and Adaptation , 1996, The Yale Journal of Biology and Medicine.

[68]  P. Callaerts,et al.  Squid Pax-6 and eye development. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[69]  A. Reiner,et al.  Structural and functional evolution of the basal ganglia in vertebrates , 1998, Brain Research Reviews.

[70]  A. Di Cosmo,et al.  Neuropeptidergic control of the optic gland of Octopus vulgaris: FMRF‐amide and GnRH immunoreactivity , 1998, The Journal of comparative neurology.

[71]  J. Rubenstein,et al.  Regionalization of the prosencephalic neural plate. , 1998, Annual review of neuroscience.

[72]  A. Cosmo,et al.  Neuropeptidergic control of the optic gland of Octopus vulgaris: FMRF-amide and GnRH immunoreactivity. , 1998 .

[73]  R. Llinás,et al.  The first-order giant neurons of the giant fiber system in the squid: electrophysiological and ultrastructural observations , 1998, Journal of neurocytology.

[74]  S. Grillner,et al.  On the cellular bases of vertebrate locomotion. , 1999, Progress in brain research.

[75]  D. Arendt,et al.  Comparison of early nerve cord development in insects and vertebrates. , 1999, Development.

[76]  S. Shigeno,et al.  Embryonic and paralarval development of the central nervous system of the loliginid squid Sepioteuthis lessoniana , 2001, The Journal of comparative neurology.

[77]  A. Simeone,et al.  Developmental genetic evidence for a monophyletic origin of the bilaterian brain. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[78]  N. Strausfeld,et al.  Common design in a unique midline neuropil in the brains of arthropods. , 2002, Arthropod structure & development.

[79]  A. Kanda,et al.  Cloning of Octopus cephalotocin receptor, a member of the oxytocin/vasopressin superfamily. , 2003, The Journal of endocrinology.

[80]  M. Martindale,et al.  Cephalopod Hox genes and the origin of morphological novelties , 2003, Nature.

[81]  John Zachary Young,et al.  The Brains and Lives of Cephalopods , 2003 .

[82]  Luis Puelles,et al.  Forebrain gene expression domains and the evolving prosomeric model , 2003, Trends in Neurosciences.

[83]  A. Kanda,et al.  Single exon structures of the oxytocin/vasopressin superfamily peptides of octopus. , 2003, Biochemical and biophysical research communications.

[84]  B. Hochner,et al.  A learning and memory area in the octopus brain manifests a vertebrate-like long-term potentiation. , 2003, Journal of neurophysiology.

[85]  M. Heisenberg Mushroom body memoir: from maps to models , 2003, Nature Reviews Neuroscience.

[86]  The positive learning process in Octopus vulgaris , 1963, Zeitschrift für vergleichende Physiologie.

[87]  H. Maldonado The positive and negative learning process in Octopus vulgaris Lamarck. Influence of the vertical and median superior frontal lobes , 2004, Zeitschrift für vergleichende Physiologie.

[88]  H. Maldonado The general amplification function of the vertical lobe in Octopus vulgaris , 1963, Zeitschrift für vergleichende Physiologie.

[89]  N. Tublitz,et al.  Peripheral innervation patterns and central distribution of fin chromatophore motoneurons in the cuttlefish Sepia officinalis , 2004, Journal of Experimental Biology.

[90]  K. Takuwa-Kuroda,et al.  Expression and distribution of octopus gonadotropin‐releasing hormone in the central nervous system and peripheral organs of the octopus (Octopus vulgaris) by in situ hybridization and immunohistochemistry , 2004, The Journal of comparative neurology.

[91]  V. L. Svidersky,et al.  Insects and Vertebrates: Analogous Structures in Higher Integrative Centers of the Brain , 2002, Journal of Evolutionary Biochemistry and Physiology.

[92]  J. Messenger,et al.  New pathways to the “cerebellum” in Octopus Studies by using a modified Fink-Heimer technique , 1985, Cell and Tissue Research.

[93]  P. Boyle,et al.  Cephalopods as Predators , 2005 .

[94]  B. Baars,et al.  Identifying hallmarks of consciousness in non-mammalian species , 2005, Consciousness and Cognition.

[95]  A. Kanda,et al.  Novel evolutionary lineages of the invertebrate oxytocin/vasopressin superfamily peptides and their receptors in the common octopus (Octopus vulgaris). , 2005, The Biochemical journal.

[96]  D. Faber,et al.  The Mauthner Cell Half a Century Later: A Neurobiological Model for Decision-Making? , 2005, Neuron.

[97]  Joseph C. Pearson,et al.  Modulating Hox gene functions during animal body patterning , 2005, Nature Reviews Genetics.

[98]  N. Tublitz,et al.  Central distribution and three-dimensional arrangement of fin chromatophore motoneurons in the cuttlefish Sepia officinalis , 2006, Invertebrate Neuroscience.

[99]  N. Strausfeld,et al.  The organization and evolutionary implications of neuropils and their neurons in the brain of the onychophoran Euperipatoides rowelli. , 2006, Arthropod structure & development.

[100]  Toshio Takahashi,et al.  Molecular and functional characterization of a novel gonadotropin-releasing-hormone receptor isolated from the common octopus (Octopus vulgaris). , 2006, The Biochemical journal.

[101]  H. Yin,et al.  The role of the basal ganglia in habit formation , 2006, Nature Reviews Neuroscience.

[102]  B. Hochner,et al.  The Octopus: A Model for a Comparative Analysis of the Evolution of Learning and Memory Mechanisms , 2006, The Biological Bulletin.

[103]  V. Hartenstein The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. , 2006, The Journal of endocrinology.

[104]  D. Arendt,et al.  Molecular Architecture of Annelid Nerve Cord Supports Common Origin of Nervous System Centralization in Bilateria , 2007, Cell.

[105]  H. Hausen,et al.  Conserved Sensory-Neurosecretory Cell Types in Annelid and Fish Forebrain: Insights into Hypothalamus Evolution , 2007, Cell.

[106]  R. Pfeifer,et al.  Self-Organization, Embodiment, and Biologically Inspired Robotics , 2007, Science.

[107]  S. Baratte,et al.  Engrailed in cephalopods: a key gene related to the emergence of morphological novelties , 2007, Development Genes and Evolution.

[108]  Volker Hartenstein,et al.  Specification and development of the pars intercerebralis and pars lateralis, neuroendocrine command centers in the Drosophila brain. , 2007, Developmental biology.

[109]  Larry W. Swanson,et al.  Quest for the basic plan of nervous system circuitry , 2007, Brain Research Reviews.

[110]  Kristin Tessmar-Raible The evolution of neurosecretory centers in bilaterian forebrains: insights from protostomes. , 2007, Seminars in cell & developmental biology.

[111]  M. Martindale,et al.  Acoel development supports a simple planula-like urbilaterian , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[112]  Uwe Homberg,et al.  Evolution of the central complex in the arthropod brain with respect to the visual system. , 2008, Arthropod structure & development.

[113]  S. Shigeno,et al.  Evolution of the cephalopod head complex by assembly of multiple molluscan body parts: Evidence from Nautilus embryonic development , 2008, Journal of morphology.

[114]  A. Butler Evolution of the thalamus: a morphological and functional review , 2008 .

[115]  D. Arendt The evolution of cell types in animals: emerging principles from molecular studies , 2008, Nature Reviews Genetics.

[116]  B. Hochner,et al.  The Octopus Vertical Lobe Modulates Short-Term Learning Rate and Uses LTP to Acquire Long-Term Memory , 2008, Current Biology.

[117]  S. Farris Evolutionary Convergence of Higher Brain Centers Spanning the Protostome-Deuterostome Boundary , 2008, Brain, Behavior and Evolution.

[118]  G. Fiorito,et al.  Behavioral Analysis of Learning and Memory in Cephalopods , 2008 .

[119]  N. Schiff Central Thalamic Contributions to Arousal Regulation and Neurological Disorders of Consciousness , 2008, Annals of the New York Academy of Sciences.

[120]  Jennifer A. Mather,et al.  Cephalopod consciousness: Behavioural evidence , 2008, Consciousness and Cognition.

[121]  G. Fiorito,et al.  Behavioral Analysis of Learning and Memory in Cephalopods , 2008 .

[122]  G. Tononi,et al.  Consciousness and Anesthesia , 2008, Science.

[123]  F. Grasso,et al.  The Evolution of Flexible Behavioral Repertoires in Cephalopod Molluscs , 2009, Brain, Behavior and Evolution.

[124]  S. Shigeno,et al.  Developmental expression of apterous/Lhx2/9 in the sepiolid squid Euprymna scolopes supports an ancestral role in neural development , 2009, Evolution & development.

[125]  B. Hochner,et al.  Nonsomatotopic Organization of the Higher Motor Centers in Octopus , 2009, Current Biology.

[126]  Bing Liu,et al.  Conditional Routing , 2009, Encyclopedia of Database Systems.

[127]  S. Baratte,et al.  Shh and Pax6 have unconventional expression patterns in embryonic morphogenesis in Sepia officinalis (Cephalopoda). , 2009, Gene expression patterns : GEP.

[128]  K. Sillar Mauthner cells , 2009, Current Biology.

[129]  David B. Edelman,et al.  Animal consciousness: a synthetic approach , 2009, Trends in Neurosciences.

[130]  J. Young THE NUMBER AND SIZES OF NERVE CELLS IN OCTOPUS , 2009 .

[131]  L. Moroz On the Independent Origins of Complex Brains and Neurons , 2009, Brain, Behavior and Evolution.

[132]  H. Minakata Oxytocin/vasopressin and gonadotropin‐releasing hormone from cephalopods to vertebrates , 2010, Annals of the New York Academy of Sciences.

[133]  S. Shigeno The origins of cephalopod body plans: A geometrical and developmental basis for the evolution of vertebrate-like organ systems , 2010 .

[134]  S. Harzsch,et al.  Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary , 2010, Frontiers in Zoology.

[135]  B. Hochner,et al.  Serotonin is a facilitatory neuromodulator of synaptic transmission and “reinforces” long-term potentiation induction in the vertical lobe of Octopus vulgaris , 2010, Neuroscience.

[136]  R. Loesel,et al.  The mushroom bodies – prominent brain centres of arthropods and annelids with enigmatic evolutionary origin , 2010 .

[137]  Raju Tomer,et al.  Profiling by Image Registration Reveals Common Origin of Annelid Mushroom Bodies and Vertebrate Pallium , 2010, Cell.

[138]  C. Lebiere,et al.  Conditional routing of information to the cortex: a model of the basal ganglia's role in cognitive coordination. , 2010, Psychological review.

[139]  B. Hochner Functional and comparative assessments of the octopus learning and memory system. , 2010, Frontiers in bioscience.

[140]  J. Vinther,et al.  Cephalopod origin and evolution: A congruent picture emerging from fossils, development and molecules , 2011, BioEssays : news and reviews in molecular, cellular and developmental biology.

[141]  C. Wiersma,et al.  Principles in the Organization of Invertebrate Sensory Systems , 2011 .

[142]  Yonatan Loewenstein,et al.  Alternative Sites of Synaptic Plasticity in Two Homologous “Fan-out Fan-in” Learning and Memory Networks , 2011, Current Biology.

[143]  R. Loesel,et al.  Lophotrochozoan neuroanatomy: An analysis of the brain and nervous system of Lineus viridis(Nemertea) using different staining techniques , 2011, Frontiers in Zoology.

[144]  G. Fiorito,et al.  Non-invasive study of Octopus vulgaris arm morphology using ultrasound , 2011, Journal of Experimental Biology.

[145]  B. Hochner,et al.  Octopus vulgaris Uses Visual Information to Determine the Location of Its Arm , 2011, Current Biology.

[146]  S. Baratte,et al.  orthodenticle/otx ortholog expression in the anterior brain and eyes of Sepia officinalis (Mollusca, Cephalopoda). , 2012, Gene expression patterns : GEP.

[147]  H. Kimura,et al.  Immunohistochemical localization of two types of choline acetyltransferase in neurons and sensory cells of the octopus arm , 2013, Brain Structure and Function.

[148]  J. Rosenthal,et al.  A role for A-to-I RNA editing in temperature adaptation. , 2012, Physiology.

[149]  Todd H. Oakley,et al.  A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment , 2012, BMC Evolutionary Biology.

[150]  Paolo Dario,et al.  Design and development of a soft robotic octopus arm exploiting embodied intelligence , 2012, 2012 IEEE International Conference on Robotics and Automation.

[151]  A. Wanninger,et al.  Analysis of neurotransmitter distribution in brain development of benthic and pelagic octopod cephalopods , 2012, Journal of morphology.

[152]  Joshua J C Rosenthal,et al.  RNA Editing Underlies Temperature Adaptation in K+ Channels from Polar Octopuses , 2012, Science.

[153]  Nicholas J. Strausfeld,et al.  Arthropod Brains: Evolution, Functional Elegance, and Historical Significance , 2012 .

[154]  Northcutt Rg Evolution of centralized nervous systems: Two schools of evolutionary thought , 2012 .

[155]  B. Hochner An Embodied View of Octopus Neurobiology , 2012, Current Biology.

[156]  Paolo Dario,et al.  Soft Robot Arm Inspired by the Octopus , 2012, Adv. Robotics.

[157]  B. Hochner How Nervous Systems Evolve in Relation to Their Embodiment: What We Can Learn from Octopuses and Other Molluscs , 2013, Brain, Behavior and Evolution.

[158]  Clint J. Perry,et al.  Invertebrate learning and cognition: relating phenomena to neural substrate. , 2013, Wiley interdisciplinary reviews. Cognitive science.

[159]  M. Giurfa Cognition with few neurons: higher-order learning in insects , 2013, Trends in Neurosciences.

[160]  J. Sese,et al.  Loss of the six3/6 controlling pathways might have resulted in pinhole-eye evolution in Nautilus , 2013, Scientific Reports.

[161]  João E. Carvalho,et al.  Evolution of bilaterian central nervous systems: a single origin? , 2013, EvoDevo.

[162]  G. Roth The Long Evolution of Brains and Minds , 2013 .

[163]  L. Teixeira,et al.  Eye , 2013, AORN journal.

[164]  M. Giurfa,et al.  Conceptual learning by miniature brains , 2013, Proceedings of the Royal Society B: Biological Sciences.

[165]  N. Strausfeld,et al.  Deep Homology of Arthropod Central Complex and Vertebrate Basal Ganglia , 2013, Science.

[166]  U. Homberg,et al.  Organization and functional roles of the central complex in the insect brain. , 2014, Annual review of entomology.

[167]  Frank W. Grasso,et al.  The octopus with two brains: how are distributed and central representations integrated in the octopus central nervous system? , 2014 .

[168]  B. Degnan,et al.  POU genes are expressed during the formation of individual ganglia of the cephalopod central nervous system , 2014, EvoDevo.

[169]  K. Yura,et al.  Cephalopod eye evolution was modulated by the acquisition of Pax-6 splicing variants , 2014, Scientific Reports.

[170]  Laura Focareta,et al.  Characterization of Homeobox Genes Reveals Sophisticated Regionalization of the Central Nervous System in the European Cuttlefish Sepia officinalis , 2014, PloS one.

[171]  C. W. Ragsdale,et al.  The gyri of the octopus vertical lobe have distinct neurochemical identities , 2015, The Journal of comparative neurology.

[172]  Tamar Flash,et al.  Arm Coordination in Octopus Crawling Involves Unique Motor Control Strategies , 2015, Current Biology.

[173]  Oleg Simakov,et al.  The octopus genome and the evolution of cephalopod neural and morphological novelties , 2015, Nature.

[174]  G. Roth Convergent evolution of complex brains and high intelligence , 2015, Philosophical Transactions of the Royal Society B: Biological Sciences.

[175]  B. Hochner,et al.  The vertical lobe of cephalopods: an attractive brain structure for understanding the evolution of advanced learning and memory systems , 2015, Journal of Comparative Physiology A.

[176]  B. Degnan,et al.  The ParaHox gene Gsx patterns the apical organ and central nervous system but not the foregut in scaphopod and cephalopod mollusks , 2015, EvoDevo.

[177]  B. Degnan,et al.  Ancestral role of Pax2/5/8 in molluscan brain and multimodal sensory system development , 2015, BMC Evolutionary Biology.

[178]  A. Vania Apkarian,et al.  Nociception, Pain, Negative Moods, and Behavior Selection , 2015, Neuron.

[179]  C. W. Ragsdale,et al.  Evidence for a cordal, not ganglionic, pattern of cephalopod brain neurogenesis , 2015, Zoological Letters.

[180]  P. Holmes,et al.  The comparative investigation of the stick insect and cockroach models in the study of insect locomotion , 2015 .

[181]  A. Büschges,et al.  A Leg-Local Neural Mechanism Mediates the Decision to Search in Stick Insects , 2015, Current Biology.

[182]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[183]  N. Strausfeld,et al.  Genealogical correspondence of a forebrain centre implies an executive brain in the protostome–deuterostome bilaterian ancestor , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[184]  Laura Focareta,et al.  Analyses of Sox-B and Sox-E Family Genes in the Cephalopod Sepia officinalis: Revealing the Conserved and the Unusual , 2016, PloS one.

[185]  O. Kiehn Decoding the organization of spinal circuits that control locomotion , 2016, Nature Reviews Neuroscience.

[186]  E. Meyer,et al.  Eye development and photoreceptor differentiation in the cephalopod Doryteuthis pealeii , 2016, Development.

[187]  S. Baratte,et al.  Nervous system development in cephalopods: How egg yolk-richness modifies the topology of the mediolateral patterning system. , 2016, Developmental biology.

[188]  Evolution of highly diverse forms of behavior in molluscs , 2016, Current Biology.

[189]  N. Holland Nervous systems and scenarios for the invertebrate-to-vertebrate transition , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[190]  D. Hillis,et al.  Complex Homology and the Evolution of Nervous Systems. , 2016, Trends in ecology & evolution.

[191]  Shuichi Shigeno,et al.  Brain Evolution as an Information Flow Designer: The Ground Architecture for Biological and Artificial General Intelligence , 2017 .

[192]  Marc van Duijn Phylogenetic origins of biological cognition: convergent patterns in the early evolution of learning , 2017, Interface Focus.

[193]  H. Kimura,et al.  Immunohistochemical and biochemical evidence for the presence of serotonin-containing neurons and nerve fibers in the octopus arm , 2017, Brain Structure and Function.

[194]  S. Baratte,et al.  The Pax gene family: Highlights from cephalopods , 2017, PloS one.

[195]  Binyamin Hochner,et al.  Embodied Organization of Octopus vulgaris Morphology, Vision, and Locomotion , 2017, Front. Physiol..

[196]  M. Duijn Phylogenetic origins of biological cognition: convergent patterns in the early evolution of learning. , 2017 .

[197]  L. Lai,et al.  Origin of the Reflectin Gene and Hierarchical Assembly of Its Protein , 2017, Current Biology.

[198]  P. Holmes,et al.  Intra- and intersegmental influences among central pattern generating networks in the walking system of the stick insect. , 2017, Journal of neurophysiology.

[199]  C. W. Ragsdale,et al.  Cadherin genes and evolutionary novelties in the octopus. , 2017, Seminars in cell & developmental biology.

[200]  B. Hochner,et al.  The Vertical Lobe of Cephalopods—A Brain Structure Ideal for Exploring the Mechanisms of Complex Forms of Learning and Memory , 2017 .

[201]  L. Dickel,et al.  Cephalopod complex cognition , 2017, Current Opinion in Behavioral Sciences.

[202]  Gáspár Jékely,et al.  Synaptic and peptidergic connectome of a neurosecretory center in the annelid brain , 2017, eLife.

[203]  R. Unger,et al.  Trade-off between Transcriptome Plasticity and Genome Evolution in Cephalopods , 2017, Cell.

[204]  G. Fiorito,et al.  Cephalopods as Predators: A Short Journey among Behavioral Flexibilities, Adaptions, and Feeding Habits , 2017, Front. Physiol..

[205]  C. Hilber,et al.  A SURVEY OF THE EVIDENCE , 2018 .

[206]  K. Rajneesh,et al.  Pathways of Pain Perception and Modulation , 2018 .