Iron isotopes may reveal the redox conditions of mantle melting from Archean to Present

[1]  A. Pourmand,et al.  Routine isotopic analysis of iron by HR-MC-ICPMS: How precise and how accurate? , 2009 .

[2]  A. Nutman,et al.  New 1:20,000 scale geological maps, synthesis and history of investigation of the Isua supracrustal belt and adjacent orthogneisses, southern West Greenland: a glimpse of Eoarchaean crust formation and orogeny , 2009 .

[3]  Katherine A. Kelley,et al.  Water and the Oxidation State of Subduction Zone Magmas , 2009, Science.

[4]  W. Griffin,et al.  Fractionation of oxygen and iron isotopes by partial melting processes : implications for the interpretation of stable isotope signatures in mafic rocks , 2009 .

[5]  C. Langmuir,et al.  Origins of chemical diversity of back‐arc basin basalts: A segment‐scale study of the Eastern Lau Spreading Center , 2009 .

[6]  M. Norman,et al.  Evidence for subduction at 3.8 Ga: Geochemistry of arc-like metabasalts from the southern edge of the Isua Supracrustal Belt , 2009 .

[7]  N. Dauphas,et al.  High Precision Iron Isotopic Analyzes of Meteorites and Terrestrial Rocks: 60Fe Distribution and Mass Fractionation Laws , 2009 .

[8]  V. Polyakov Equilibrium Iron Isotope Fractionation at Core-Mantle Boundary Conditions , 2009, Science.

[9]  R. Schoenberg,et al.  Iron and lithium isotope systematics of the Hekla volcano, Iceland — Evidence for Fe isotope fractionation during magma differentiation , 2009 .

[10]  F. Blanckenburg,et al.  Fe isotope systematics of coexisting amphibole and pyroxene in the alkaline igneous rock suite of the Ilímaussaq Complex, South Greenland , 2009 .

[11]  S. Sutton,et al.  Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle , 2008, Nature.

[12]  B. Beard,et al.  The role of volatile exsolution and sub-solidus fluid/rock interactions in producing high 56Fe/54Fe ratios in siliceous igneous rocks , 2008 .

[13]  R. T. Helz,et al.  Iron Isotope Fractionation During Magmatic Differentiation in Kilauea Iki Lava Lake , 2008, Science.

[14]  C. Manning,et al.  Equilibrium high-temperature Fe isotope fractionation between fayalite and magnetite: An experimental calibration , 2008 .

[15]  D. Frost,et al.  The Redox State of Earth's Mantle , 2008 .

[16]  M. Zuilen,et al.  Iron isotope, major and trace element characterization of early Archean supracrustal rocks from SW Greenland: Protolith identification and metamorphic overprint , 2007 .

[17]  R. Clayton,et al.  Equilibrium Iron Isotope Fractionation Factors of Minerals: Reevaluation from the Data of Nuclear Inelastic Resonant X-ray Scattering and Mossbauer Spectroscopy , 2007 .

[18]  D. Ionov,et al.  Partial melting and melt percolation in the mantle: The message from Fe isotopes , 2007 .

[19]  A. Nutman,et al.  ∼3,850 Ma tonalites in the Nuuk region, Greenland: geochemistry and their reworking within an Eoarchaean gneiss complex , 2007 .

[20]  B. Beard,et al.  Comment on “Iron isotope fractionation during planetary differentiation” by S. Weyer et al., Earth Planet. Sci. Lett. V240, pages 251–264 , 2007 .

[21]  F. Poitrasson Does planetary differentiation really fractionate iron isotopes , 2007 .

[22]  H. Rollinson Recognising early Archaean mantle: a reappraisal , 2007 .

[23]  S. Mojzsis,et al.  Identification of chemical sedimentary protoliths using iron isotopes in the > 3750 Ma Nuvvuagittuq supracrustal belt, Canada , 2007 .

[24]  F. Blanckenburg,et al.  The experimental calibration of the iron isotope fractionation factor between pyrrhotite and peralkaline rhyolitic melt , 2007 .

[25]  F. Blanckenburg,et al.  Modes of planetary-scale Fe isotope fractionation , 2006 .

[26]  M. Anand,et al.  Searching for signatures of life on Mars: an Fe-isotope perspective , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[27]  Katherine A. Kelley,et al.  Mantle melting as a function of water content beneath back-arc basins , 2006 .

[28]  Jean Susini,et al.  Redox state of iron in peralkaline rhyolitic glass/melt: X-ray absorption micro-spectroscopy experiments at high temperature , 2006 .

[29]  O. Rouxel,et al.  Mass spectrometry and natural variations of iron isotopes. , 2006, Mass spectrometry reviews.

[30]  A. Woodland,et al.  Ferric iron in orogenic lherzolite massifs and controls of oxygen fugacity in the upper mantle , 2006 .

[31]  B. Mysen The structural behavior of ferric and ferrous iron in aluminosilicate glass near meta-aluminosilicate joins , 2006 .

[32]  A. Anbar,et al.  Iron isotope fractionation during planetary differentiation , 2005 .

[33]  Cin-Ty A. Lee,et al.  Similar V/Sc Systematics in MORB and Arc Basalts: Implications for the Oxygen Fugacities of their Mantle Source Regions , 2005 .

[34]  F. Poitrasson,et al.  Heavy iron isotope composition of granites determined by high resolution MC-ICP-MS , 2005 .

[35]  Patricia Ann Mabrouk,et al.  Multi-spectroscopic study of Fe(II) in silicate glasses: Implications for the coordination environment of Fe(II) in silicate melts , 2005 .

[36]  M. Wilke,et al.  Erratum to “Determination of the iron oxidation state in basaltic glasses using XANES at the K-edge” [Chem. Geol. 213 (2004) 71–87] , 2005 .

[37]  C. McCammon,et al.  Systematic iron isotope variations in mantle rocks and minerals: The effects of partial melting and oxygen fugacity , 2005 .

[38]  F. Poitrasson,et al.  Significance of iron isotope mineral fractionation in pallasites and iron meteorites for the core-mantle differentiation of terrestrial planets [rapid communication] , 2005 .

[39]  F. Blanckenburg,et al.  An assessment of the accuracy of stable Fe isotope ratio measurements on samples with organic and inorganic matrices by high-resolution multicollector ICP-MS , 2005 .

[40]  A. Bézos,et al.  The Fe3+/ΣFe ratios of MORB glasses and their implications for mantle melting , 2005 .

[41]  A. Davis,et al.  Clues from Fe Isotope Variations on the Origin of Early Archean BIFs from Greenland , 2004, Science.

[42]  D. Rubie,et al.  The Constancy of Upper Mantle fO2 Through Time Inferred from V/Sc Ratios in Basalts: Implications for the Rise in Atmospheric O2 , 2004 .

[43]  M. Wilke,et al.  Determination of the iron oxidation state in basaltic glasses using XANES at the K-edge , 2004 .

[44]  B. Beard,et al.  Inter-mineral Fe isotope variations in mantle-derived rocks and implications for the Fe geochemical cycle , 2004 .

[45]  A. Taira,et al.  Global tectonic significance of the Solomon Islands and Ontong Java Plateau convergent zone , 2004 .

[46]  A. Davis,et al.  Chromatographic separation and multicollection-ICPMS analysis of iron. Investigating mass-dependent and -independent isotope effects. , 2004, Analytical chemistry.

[47]  F. Poitrasson,et al.  Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms , 2004 .

[48]  S. Weyer,et al.  Fe isotope variations in natural materials measured using high mass resolution multiple collector ICPMS. , 2004, Analytical chemistry.

[49]  A. Hofmann,et al.  Alteration and geochemical patterns in the 3.7–3.8 Ga Isua greenstone belt, West Greenland , 2003 .

[50]  B. Öhlander,et al.  Performance of high resolution MC-ICP-MS for Fe isotope ratio measurements in sedimentary geological materials , 2003 .

[51]  Henry J Sun,et al.  Application of Fe isotopes to tracing the geochemical and biological cycling of Fe , 2003 .

[52]  A. Nutman,et al.  ≥ 3850 Ma BIF and mafic inclusions in the early Archaean Itsaq Gneiss Complex around Akilia, southern West Greenland? The difficulties of precise dating of zircon-free protoliths in migmatites , 2002 .

[53]  A. Nutman,et al.  Constraints on mantle evolution from 187Os/188Os isotopic compositions of Archean ultramafic rocks from southern West Greenland (3.8 Ga) and Western Australia (3.46 Ga) , 2002 .

[54]  John H. Jones,et al.  Oxygen fugacity and geochemical variations in the martian basalts: implications for martian basalt petrogenesis and the oxidation state of the upper mantle of Mars , 2002 .

[55]  A. Hofmann,et al.  Boninite-like volcanic rocks in the 3.7–3.8 Ga Isua greenstone belt, West Greenland: geochemical evidence for intra-oceanic subduction zone processes in the early Earth , 2002 .

[56]  A. Nutman,et al.  Evidence for 3650–3600 Ma assembly of the northern end of the Itsaq Gneiss Complex, Greenland: Implication for early Archaean tectonics , 2002 .

[57]  J. Schwieters,et al.  High precision Fe isotope measurements with high mass resolution MC-ICPMS , 2001 .

[58]  S. Eggins,et al.  Hafnium isotope evidence for ‘conservative’ element mobility during subduction zone processes , 2001 .

[59]  John W. Delano,et al.  Redox History of the Earth's Interior since ∼3900 Ma: Implications for Prebiotic Molecules , 2001, Origins of life and evolution of the biosphere.

[60]  M. Wadhwa,et al.  Redox State of Mars' Upper Mantle and Crust from Eu Anomalies in Shergottite Pyroxenes , 2001, Science.

[61]  G. Manhès,et al.  Chemical composition of the Earth and the volatility control on planetary genetics , 2001 .

[62]  J. Myers Protoliths of the 3.8-3.7 Ga Isua greenstone belt, West Greenland , 2001 .

[63]  V. Polyakov,et al.  The use of Mössbauer spectroscopy in stable isotope geochemistry , 2000 .

[64]  M. Norman,et al.  Meta-igneous (non-gneissic) tonalites and quartz-diorites from an extensive ca. 3800 Ma terrain south of the Isua supracrustal belt, southern West Greenland: constraints on early crust formation , 1999 .

[65]  R. Arculus,et al.  The redox state of subduction zones: insights from arc-peridotites , 1999 .

[66]  T. Masuda,et al.  Plate Tectonics at 3.8–3.7 Ga: Field Evidence from the Isua Accretionary Complex, Southern West Greenland , 1999, The Journal of Geology.

[67]  A. Bowman,et al.  Applied smoothing techniques for data analysis : the kernel approach with S-plus illustrations , 1999 .

[68]  B. Beard,et al.  High precision iron isotope measurements of terrestrial and lunar materials , 1999 .

[69]  A. D. Saunders,et al.  Geological tectonic framework of Solomon Islands, SW Pacific: crustal accretion and growth within an intra-oceanic setting , 1999 .

[70]  S. Eggins,et al.  Magma Genesis in the New Britain Island Arc: Further Insights into Melting and Mass Transfer Processes , 1998 .

[71]  K. Collerson,et al.  Geochemical Evolution within the Tonga–Kermadec–Lau Arc–Back-arc Systems: the Role of Varying Mantle Wedge Composition in Space and Time , 1998 .

[72]  D. Canil Vanadium partitioning and the oxidation state of Archaean komatiite magmas , 1997, Nature.

[73]  A. Nutman,et al.  The Itsaq Gneiss Complex of southern West Greenland; the world's most extensive record of early crustal evolution (3900-3600 Ma) , 1996 .

[74]  D. Ohnenstetter,et al.  Compositional variation and primary water contents of differentiated interstitial and included glasses in boninites , 1996 .

[75]  W. McDonough,et al.  Ferric iron in peridotites and mantle oxidation states , 1994 .

[76]  S. Newman,et al.  The role of water in the petrogenesis of Mariana trough magmas , 1994 .

[77]  R. Johnson,et al.  Isotopic and trace-element profiles across the New Britain island arc, Papua New Guinea , 1993 .

[78]  R. Johnson,et al.  Timescale for producing the geochemical signature of island arc magmas: U-Th-Po and Be-B systematics in recent Papua New Guinea lavas , 1993 .

[79]  P. Bievre,et al.  Determination of the absolute isotopic composition and Atomic Weight of a reference sample of natural iron , 1992 .

[80]  D. Ohnenstetter,et al.  Overgrowth Textures, Disequilibrium Zoning, and Cooling History of a Glassy Four-Pyroxene Boninite Dyke from New Caledonia , 1992 .

[81]  J. Morris,et al.  The subducted component in island arc lavas: constraints from Be isotopes and B–Be systematics , 1990, Nature.

[82]  C. M. Schiffries,et al.  Petrogenesis of Ultramafic Metamorphic Rocks from the 3800 Ma Isua Supracrustal Belt, West Greenland , 1988 .

[83]  C. Langmuir,et al.  Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness , 1987 .

[84]  C. Langmuir,et al.  Oxidation states of mid-ocean ridge basalt glasses , 1986 .

[85]  A. Rubin The Blithfield meteorite and the origin of sulfide rich metal-poor clasts and inclusions in brecciated enstatite chondrites , 1984 .

[86]  F. Strelow Improved separation of iron from copper and other elements by anion-exchange chromatography on a 4% cross-linked resin with high concentrations of hydrochloric acid. , 1980, Talanta.

[87]  N. Kuroda,et al.  Clinoenstatite in boninites from the Bonin Islands, Japan , 1980, Nature.

[88]  W. Bryan,et al.  Mineralogy and Geochemistry of the Younger Volcanic Islands of Tonga, S.W. Pacific , 1973 .

[89]  W. Bryan,et al.  Geology, petrography, and geochemistry of the volcanic islands of Tonga , 1972 .

[90]  W. Melson,et al.  Volcanic Eruption at Metis Shoal, Tonga, 1967-1968: Description and Petrology , 1970 .

[91]  A. J. Martin,et al.  A new form of chromatogram employing two liquid phases: A theory of chromatography. 2. Application to the micro-determination of the higher monoamino-acids in proteins. , 1941, The Biochemical journal.

[92]  J. N. Wilson,et al.  A Theory of Chromatography , 1940 .

[93]  Dunyi Liu,et al.  Eoarchaean crustal growth in West Greenland (Itsaq Gneiss Complex) and in northeastern China (Anshan area): review and synthesis , 2009 .

[94]  M. Wadhwa Redox conditions on small bodies, the moon and mars , 2008 .

[95]  E. Schauble Applying Stable Isotope Fractionation Theory to New Systems , 2004 .

[96]  A. Nutman,et al.  Abyssal peridotites >3,800 Ma from southern West Greenland: field relationships, petrography, geochronology, whole-rock and mineral chemistry of dunite and harzburgite inclusions in the Itsaq Gneiss Complex , 2002 .

[97]  M. Rosing,et al.  Earliest part of Earth's stratigraphic record: A reappraisal of the >3.7 Ga Isua (Greenland) supracrustal sequence , 1996 .

[98]  W. Bryan,et al.  Regional geochemistry of the Lau-Tonga arc and backarc systems , 1994 .

[99]  A. Crawford,et al.  Classification, petrogenesis and tectonic setting of boninites. , 1989 .

[100]  D. Sears,et al.  Overview and classification of meteorites. , 1988 .

[101]  Basaltic Volcanism Study Basaltic volcanism on the terrestrial planets , 1981 .

[102]  M. Tatsumoto,et al.  ISOTOPIC COMPOSITION OF LEAD IN VOLCANIC ROCKS FROM CENTRAL HONSHU WITH REGARD TO BASALT GENESIS. , 1969 .