Calcite crystal growth by a solid-state transformation of stabilized amorphous calcium carbonate nanospheres in a hydrogel.

[1]  P. Fratzl,et al.  Nucleation and growth of magnetite from solution. , 2013, Nature materials.

[2]  P. van der Schoot,et al.  Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate , 2013, Nature Communications.

[3]  S. Weiner,et al.  Plant cystoliths: a complex functional biocomposite of four distinct silica and amorphous calcium carbonate phases. , 2012, Chemistry.

[4]  Z. Seh,et al.  Crystal Growth of Calcium Carbonate in Hydrogels as a Model of Biomineralization , 2012 .

[5]  Fabio Nudelman,et al.  Biomineralization as an inspiration for materials chemistry. , 2012, Angewandte Chemie.

[6]  Nico A. J. M. Sommerdijk,et al.  Biomineralisation als Inspirationsquelle für die Materialchemie , 2012 .

[7]  Jillian F Banfield,et al.  Direction-Specific Interactions Control Crystal Growth by Oriented Attachment , 2012, Science.

[8]  M. Burghammer,et al.  Structure-property relationships of a biological mesocrystal in the adult sea urchin spine , 2012, Proceedings of the National Academy of Sciences.

[9]  S. Weiner,et al.  Mineral and Matrix Components of the Operculum and Shell of the Barnacle Balanus amphitrite: Calcite Crystal Growth in a Hydrogel , 2011 .

[10]  S. Weiner,et al.  Crystallization Pathways in Biomineralization , 2011 .

[11]  S. Weiner,et al.  The stabilizing effect of silicate on biogenic and synthetic amorphous calcium carbonate. , 2010, Journal of the American Chemical Society.

[12]  Helmut Cölfen,et al.  Mesocrystals—Ordered Nanoparticle Superstructures , 2010, Advanced materials.

[13]  J. Aizenberg,et al.  A kinetic model of the transformation of a micropatterned amorphous precursor into a porous single crystal. , 2010, Acta biomaterialia.

[14]  J. Aizenberg,et al.  Mechanism of calcite co-orientation in the sea urchin tooth. , 2009, Journal of the American Chemical Society.

[15]  D. Muller,et al.  Visualizing the 3D Internal Structure of Calcite Single Crystals Grown in Agarose Hydrogels , 2009, Science.

[16]  A. Alivisatos,et al.  Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories , 2009, Science.

[17]  P. Bomans,et al.  The Initial Stages of Template-Controlled CaCO3 Formation Revealed by Cryo-TEM , 2009, Science.

[18]  Helmut Cölfen,et al.  Stable Prenucleation Calcium Carbonate Clusters , 2008, Science.

[19]  S. Weiner,et al.  Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule , 2008, Proceedings of the National Academy of Sciences.

[20]  S. Weiner,et al.  Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase , 2008, Proceedings of the National Academy of Sciences.

[21]  G. Wörheide,et al.  Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals. , 2008, Micron.

[22]  P. Simon,et al.  "Hidden" hierarchy of microfibrils within 3D-periodic fluorapatite-gelatine nanocomposites: development of complexity and form in a biomimetic system. , 2008, Angewandte Chemie.

[23]  P. Simon,et al.  Biomimetic fluorapatite-gelatine nanocomposites: pre-structuring of gelatine matrices by ion impregnation and its effect on form development. , 2006, Angewandte Chemie.

[24]  Harald Tlatlik,et al.  Biomimetische Fluorapatit-Gelatine-Nanokomposite: Vorstrukturierung von Gelatine-Matrices durch Ionenimprägnierung und Auswirkungen auf die Formentwicklung , 2006 .

[25]  Steve Weiner,et al.  Mollusk shell formation: a source of new concepts for understanding biomineralization processes. , 2006, Chemistry.

[26]  Markus Antonietti,et al.  Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. , 2005, Angewandte Chemie.

[27]  Helmut Cölfen,et al.  Mesokristalle: anorganische Überstrukturen durch hochparallele Kristallisation und kontrollierte Ausrichtung , 2005 .

[28]  S. Weiner,et al.  Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase , 2004, Science.

[29]  J. R. Barnett,et al.  Cellulose microfibril angle in the cell wall of wood fibres , 2004, Biological reviews of the Cambridge Philosophical Society.

[30]  Steve Weiner,et al.  Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization , 2003 .

[31]  J. Banfield,et al.  Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. , 2000, Science.

[32]  J. Aizenberg,et al.  Control of Macromolecule Distribution within Synthetic and Biogenic Single Calcite Crystals , 1997 .

[33]  S. Weiner,et al.  Intercalation of sea urchin proteins in calcite: study of a crystalline composite material. , 1990, Science.

[34]  L. Brečević,et al.  Solubility of amorphous calcium carbonate , 1989 .

[35]  M. Steer,et al.  Cystolith Development and Structure in Pilea cadierei (Urticaceae) , 1987 .

[36]  L. Addadi,et al.  Resolution of conglomerates by stereoselective habit modifications , 1982, Nature.

[37]  Y. Oaki,et al.  Nanoengineering in echinoderms: the emergence of morphology from nanobricks. , 2006, Small.

[38]  A. ALLSOPP,et al.  Plant Anatomy , 1966, Nature.

[39]  H. Meier,et al.  Physical and Chemical Properties of the Gelatinous Layer in Tension Wood Fibres of Aspen (Populus tremula L.) , 1966 .