Calcite crystal growth by a solid-state transformation of stabilized amorphous calcium carbonate nanospheres in a hydrogel.
暂无分享,去创建一个
[1] P. Fratzl,et al. Nucleation and growth of magnetite from solution. , 2013, Nature materials.
[2] P. van der Schoot,et al. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate , 2013, Nature Communications.
[3] S. Weiner,et al. Plant cystoliths: a complex functional biocomposite of four distinct silica and amorphous calcium carbonate phases. , 2012, Chemistry.
[4] Z. Seh,et al. Crystal Growth of Calcium Carbonate in Hydrogels as a Model of Biomineralization , 2012 .
[5] Fabio Nudelman,et al. Biomineralization as an inspiration for materials chemistry. , 2012, Angewandte Chemie.
[6] Nico A. J. M. Sommerdijk,et al. Biomineralisation als Inspirationsquelle für die Materialchemie , 2012 .
[7] Jillian F Banfield,et al. Direction-Specific Interactions Control Crystal Growth by Oriented Attachment , 2012, Science.
[8] M. Burghammer,et al. Structure-property relationships of a biological mesocrystal in the adult sea urchin spine , 2012, Proceedings of the National Academy of Sciences.
[9] S. Weiner,et al. Mineral and Matrix Components of the Operculum and Shell of the Barnacle Balanus amphitrite: Calcite Crystal Growth in a Hydrogel , 2011 .
[10] S. Weiner,et al. Crystallization Pathways in Biomineralization , 2011 .
[11] S. Weiner,et al. The stabilizing effect of silicate on biogenic and synthetic amorphous calcium carbonate. , 2010, Journal of the American Chemical Society.
[12] Helmut Cölfen,et al. Mesocrystals—Ordered Nanoparticle Superstructures , 2010, Advanced materials.
[13] J. Aizenberg,et al. A kinetic model of the transformation of a micropatterned amorphous precursor into a porous single crystal. , 2010, Acta biomaterialia.
[14] J. Aizenberg,et al. Mechanism of calcite co-orientation in the sea urchin tooth. , 2009, Journal of the American Chemical Society.
[15] D. Muller,et al. Visualizing the 3D Internal Structure of Calcite Single Crystals Grown in Agarose Hydrogels , 2009, Science.
[16] A. Alivisatos,et al. Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories , 2009, Science.
[17] P. Bomans,et al. The Initial Stages of Template-Controlled CaCO3 Formation Revealed by Cryo-TEM , 2009, Science.
[18] Helmut Cölfen,et al. Stable Prenucleation Calcium Carbonate Clusters , 2008, Science.
[19] S. Weiner,et al. Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule , 2008, Proceedings of the National Academy of Sciences.
[20] S. Weiner,et al. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase , 2008, Proceedings of the National Academy of Sciences.
[21] G. Wörheide,et al. Structure and composition of calcareous sponge spicules: a review and comparison to structurally related biominerals. , 2008, Micron.
[22] P. Simon,et al. "Hidden" hierarchy of microfibrils within 3D-periodic fluorapatite-gelatine nanocomposites: development of complexity and form in a biomimetic system. , 2008, Angewandte Chemie.
[23] P. Simon,et al. Biomimetic fluorapatite-gelatine nanocomposites: pre-structuring of gelatine matrices by ion impregnation and its effect on form development. , 2006, Angewandte Chemie.
[24] Harald Tlatlik,et al. Biomimetische Fluorapatit-Gelatine-Nanokomposite: Vorstrukturierung von Gelatine-Matrices durch Ionenimprägnierung und Auswirkungen auf die Formentwicklung , 2006 .
[25] Steve Weiner,et al. Mollusk shell formation: a source of new concepts for understanding biomineralization processes. , 2006, Chemistry.
[26] Markus Antonietti,et al. Mesocrystals: inorganic superstructures made by highly parallel crystallization and controlled alignment. , 2005, Angewandte Chemie.
[27] Helmut Cölfen,et al. Mesokristalle: anorganische Überstrukturen durch hochparallele Kristallisation und kontrollierte Ausrichtung , 2005 .
[28] S. Weiner,et al. Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase , 2004, Science.
[29] J. R. Barnett,et al. Cellulose microfibril angle in the cell wall of wood fibres , 2004, Biological reviews of the Cambridge Philosophical Society.
[30] Steve Weiner,et al. Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization , 2003 .
[31] J. Banfield,et al. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. , 2000, Science.
[32] J. Aizenberg,et al. Control of Macromolecule Distribution within Synthetic and Biogenic Single Calcite Crystals , 1997 .
[33] S. Weiner,et al. Intercalation of sea urchin proteins in calcite: study of a crystalline composite material. , 1990, Science.
[34] L. Brečević,et al. Solubility of amorphous calcium carbonate , 1989 .
[35] M. Steer,et al. Cystolith Development and Structure in Pilea cadierei (Urticaceae) , 1987 .
[36] L. Addadi,et al. Resolution of conglomerates by stereoselective habit modifications , 1982, Nature.
[37] Y. Oaki,et al. Nanoengineering in echinoderms: the emergence of morphology from nanobricks. , 2006, Small.
[38] A. ALLSOPP,et al. Plant Anatomy , 1966, Nature.
[39] H. Meier,et al. Physical and Chemical Properties of the Gelatinous Layer in Tension Wood Fibres of Aspen (Populus tremula L.) , 1966 .