LiFSI vs. LiPF6 electrolytes in contact with lithiated graphite: Comparing thermal stabilities and identification of specific SEI-reinforcing additives

[1]  M. Winter,et al.  Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate , 2013 .

[2]  D. Aurbach,et al.  Investigation of Graphite Foil as Current Collector for Positive Electrodes of Li-Ion Batteries , 2013 .

[3]  Sylvie Grugeon,et al.  Thermal behaviour of the lithiated-graphite/electrolyte interface through GC/MS analysis , 2012 .

[4]  Myung-Hyun Ryou,et al.  Effects of lithium salts on thermal stabilities of lithium alkyl carbonates in SEI layer , 2012 .

[5]  Vincent Gariépy,et al.  An improved high-power battery with increased thermal operating range: C–LiFePO4//C–Li4Ti5O12 , 2012 .

[6]  Wei Zhao,et al.  Effect of sulfolane on the performance of lithium bis(oxalato)borate-based electrolytes for advanced lithium ion batteries , 2012 .

[7]  P. Johansson,et al.  Novel Lithium Imides; Effects of -F, -CF3, and -C≡N Substituents on Lithium Battery Salt Stability and Dissociation , 2012 .

[8]  Bing Li,et al.  Effect of Fluoroethylene Carbonate Additive on Low Temperature Performance of Li-Ion Batteries , 2012 .

[9]  M. Morcrette,et al.  Investigation on the fire-induced hazards of Li-ion battery cells by fire calorimetry , 2012 .

[10]  Daniel Lemordant,et al.  Comparative study of EC/DMC LiTFSI and LiPF 6 electrolytes for electrochemical storage , 2011 .

[11]  Diego Lisbona,et al.  A review of hazards associated with primary lithium and lithium-ion batteries , 2011 .

[12]  Wenfang Feng,et al.  Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for l , 2011 .

[13]  M. Armand,et al.  Transport and Electrochemical Properties and Spectral Features of Non-Aqueous Electrolytes Containing LiFSI in Linear Carbonate Solvents , 2011 .

[14]  Sylvie Grugeon,et al.  Gas chromatography/mass spectrometry as a suitable tool for the Li-ion battery electrolyte degradation mechanisms study. , 2011, Analytical chemistry.

[15]  Anthony F. Hollenkamp,et al.  Thermal Behavior of Ionic Liquids Containing the FSI Anion and the Li+ Cation , 2010 .

[16]  M. Armand,et al.  New type of imidazole based salts designed specifically for lithium ion batteries , 2010 .

[17]  B. Lucht,et al.  Investigation of Lithium Tetrafluorooxalatophosphate [ LiPF4 ( C2O4 ) ] as a Lithium-Ion Battery Electrolyte for Elevated Temperature Performance , 2010 .

[18]  I. Profatilova,et al.  Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate , 2009 .

[19]  J. Ding,et al.  Liquid electrolyte based on lithium bis-fluorosulfonyl imide salt: Aluminum corrosion studies and lithium ion battery investigations , 2009 .

[20]  K. Zaghib,et al.  LiFePO4 and graphite electrodes with ionic liquids based on bis(fluorosulfonyl)imide (FSI)-for Li-ion batteries , 2008 .

[21]  K. Möller,et al.  Ethyl isocyanate-An electrolyte additive from the large family of isocyanates for PC-based electrolytes in lithium-ion batteries , 2007 .

[22]  K. Möller,et al.  Isocyanate compounds as electrolyte additives for lithium-ion batteries , 2007 .

[23]  K. Möller,et al.  4-Bromobenzyl isocyanate versus benzyl isocyanate—New film-forming electrolyte additives and overcharge protection additives for lithium ion batteries , 2007 .

[24]  Jun Liu,et al.  Lithium difluoro(oxalato)borate as a functional additive for lithium-ion batteries , 2007 .

[25]  Shengbo Zhang A review on electrolyte additives for lithium-ion batteries , 2006 .

[26]  Philip N. Ross,et al.  Thermal Stability of LiPF6 Salt and Li-ion Battery Electrolytes Containing LiPF6 , 2006 .

[27]  Shengbo Zhang,et al.  An unique lithium salt for the improved electrolyte of Li-ion battery , 2006 .

[28]  Kang Xu,et al.  Syntheses and characterization of lithium alkyl mono- and dicarbonates as components of surface films in Li-ion batteries. , 2006, The journal of physical chemistry. B.

[29]  Doron Aurbach,et al.  On the thermal stability of LiPF6 , 2005 .

[30]  Kang Xu,et al.  Lithium Methyl Carbonate as a Reaction Product of Metallic Lithium and Dimethyl Carbonate , 2005 .

[31]  Michel Perrier,et al.  LiFePO4 safe Li-ion polymer batteries for clean environment , 2005 .

[32]  C. Wan,et al.  The function of vinylene carbonate as a thermal additive to electrolyte in lithium batteries , 2005 .

[33]  P. Johansson,et al.  Electrochemical Stability and Lithium Ion-Anion Interactions of Orthoborate Anions (BOB, MOB, BMB), and Presentation of a Novel Anion: Tris-oxalato-phosphate , 2005 .

[34]  Hui Yang,et al.  Investigations of the Exothermic Reactions of Natural Graphite Anode for Li-Ion Batteries during Thermal Runaway , 2005 .

[35]  Michel Perrier,et al.  Safe Li-ion polymer batteries for HEV applications , 2004 .

[36]  M. Armand,et al.  Novel Hückel stabilised azole ring-based lithium salts studied by ab initio Gaussian-3 theory , 2004 .

[37]  M. Ue,et al.  Novel electrolyte salts based on perfluoroalkyltrifluoroborate anions: 1. Synthesis and characterization , 2003 .

[38]  A. Smagin,et al.  Calorimetric study of thermal decomposition of lithium hexafluorophosphate , 2003 .

[39]  D. Aurbach,et al.  A comparison among LiPF6, LiPF3(CF2CF3)3 (LiFAP), and LiN(SO2CF2CF3)2 (LiBETI) solutions: electrochemical and thermal studies , 2003 .

[40]  K. M. Abraham,et al.  Thermal stability of lithium-ion battery electrolytes , 2003 .

[41]  Minoru Inaba,et al.  Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate , 2002 .

[42]  J. Yamaki,et al.  Thermal stability of graphite anode with electrolyte in lithium-ion cells , 2002 .

[43]  D. Aurbach,et al.  On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries , 2002 .

[44]  Kang Xu,et al.  LiBOB as Salt for Lithium-Ion Batteries:A Possible Solution for High Temperature Operation , 2002 .

[45]  Michael Schmidt,et al.  Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries , 2001 .

[46]  K. Edström,et al.  Thermal stability of the HOPG/liquid electrolyte interphase studied by in situ electrochemical atomic force microscopy , 2000 .

[47]  J. Dahn,et al.  Accelerating Rate Calorimetry Study on the Thermal Stability of Lithium Intercalated Graphite in Electrolyte. I. Experimental , 1999 .

[48]  L. Alcácer,et al.  Synthesis and characterization of novel urethane cross-linked ormolytes for solid-state lithium batteries , 1999 .

[49]  J. Tarascon,et al.  Differential Scanning Calorimetry Study of the Reactivity of Carbon Anodes in Plastic Li‐Ion Batteries , 1998 .

[50]  A. Kawakami,et al.  On the characteristics of electrolytes with new lithium imide salts , 1997 .

[51]  Samuel C. Levy,et al.  Safety and reliability considerations for lithium batteries , 1997 .

[52]  E. Divers,et al.  CXVIII.—Ammonium and other imidosulphites , 1901 .