Single-Cell Transcriptomics Reveal Immune Mechanisms of the Onset and Progression of IgA Nephropathy.

[1]  B. Julian,et al.  IgA nephropathy. , 2020, The New England journal of medicine.

[2]  Xianwen Ren,et al.  Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma , 2019, Cell.

[3]  Sushrut S. Waikar,et al.  The single-cell transcriptomic landscape of early human diabetic nephropathy , 2019, Proceedings of the National Academy of Sciences.

[4]  Nir Hacohen,et al.  The immune cell landscape in kidneys of patients with lupus nephritis , 2019, Nature Immunology.

[5]  Kamil Slowikowski,et al.  Tubular Cell and Keratinocyte Single-cell Transcriptomics Applied to Lupus Nephritis Reveal Type I IFN and Fibrosis Relevant Pathways , 2019, Nature Immunology.

[6]  N. Anzai,et al.  Identification of the multivalent PDZ protein PDZK1 as a binding partner of sodium–coupled monocarboxylate transporter SMCT1 (SLC5A8) and SMCT2 (SLC5A12) , 2019, The Journal of Physiological Sciences.

[7]  Samantha A. Morris,et al.  Comparative Analysis and Refinement of Human PSC-Derived Kidney Organoid Differentiation with Single-Cell Transcriptomics. , 2018, Cell stem cell.

[8]  B. Kaleta The role of osteopontin in kidney diseases , 2018, Inflammation Research.

[9]  Michael J. T. Stubbington,et al.  Single-cell reconstruction of the early maternal–fetal interface in humans , 2018, Nature.

[10]  I. Roberts,et al.  Histologic Classification of IgA Nephropathy: Past, Present, and Future. , 2018, Seminars in nephrology.

[11]  J. Barratt,et al.  Treatment of IgA Nephropathy: Evolution Over Half a Century. , 2018, Seminars in nephrology.

[12]  Sarah A. Teichmann,et al.  Single-cell transcriptomes from human kidneys reveal the cellular identity of renal tumors , 2018, Science.

[13]  Haojia Wu,et al.  Single-Cell Transcriptomics of a Human Kidney Allograft Biopsy Specimen Defines a Diverse Inflammatory Response. , 2018, Journal of the American Society of Nephrology : JASN.

[14]  Mingyao Li,et al.  Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease , 2018, Science.

[15]  Laleh Haghverdi,et al.  Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.

[16]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[17]  C. Daniel,et al.  Expression of the Alpha8 Integrin Chain Facilitates Phagocytosis by Renal Mesangial Cells , 2018, Cellular Physiology and Biochemistry.

[18]  Sutatip Pongcharoen,et al.  Selected signalling proteins recruited to the T‐cell receptor–CD3 complex , 2018, Immunology.

[19]  Haojia Wu,et al.  The promise of single-cell RNA sequencing for kidney disease investigation. , 2017, Kidney international.

[20]  Zhihong Liu,et al.  Genome-wide identification of genes essential for podocyte cytoskeletons based on single-cell RNA sequencing. , 2017, Kidney international.

[21]  Mark A. Knepper,et al.  Transcriptomes of major renal collecting duct cell types in mouse identified by single-cell RNA-seq , 2017, Proceedings of the National Academy of Sciences.

[22]  Hannah A. Pliner,et al.  Reversed graph embedding resolves complex single-cell trajectories , 2017, Nature Methods.

[23]  S. Shi,et al.  Single-cell RNA-sequence analysis of mouse glomerular mesangial cells uncovers mesangial cell essential genes. , 2017, Kidney international.

[24]  Rong Li,et al.  Single-Cell RNA-Seq Analysis Maps Development of Human Germline Cells and Gonadal Niche Interactions. , 2017, Cell stem cell.

[25]  L. O’Neill,et al.  Macrophage Immunometabolism: Where Are We (Going)? , 2017, Trends in immunology.

[26]  L. J. K. Wee,et al.  Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors , 2017, Nature Genetics.

[27]  J. Verlander,et al.  Expression of sodium-dependent dicarboxylate transporter 1 (NaDC1/SLC13A2) in normal and neoplastic human kidney. , 2017, American journal of physiology. Renal physiology.

[28]  J. Myllyharju,et al.  CD146(+) cells are essential for kidney vasculature development. , 2016, Kidney international.

[29]  J. Rathmell,et al.  A guide to immunometabolism for immunologists , 2016, Nature Reviews Immunology.

[30]  C. Hung,et al.  Serum Vascular Adhesion Protein-1 Predicts End-Stage Renal Disease in Patients with Type 2 Diabetes , 2016, PloS one.

[31]  T. B. Huber,et al.  Endothelial cell and podocyte autophagy synergistically protect from diabetes-induced glomerulosclerosis , 2015, Autophagy.

[32]  Yi Wu Contact pathway of coagulation and inflammation , 2015, Thrombosis Journal.

[33]  Murim Choi,et al.  Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens , 2014, Nature Genetics.

[34]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[35]  O. Troyanskaya,et al.  Defining cell-type specificity at the transcriptional level in human disease , 2013, Genome research.

[36]  C. Cho,et al.  Angiopoietin-1 elicits pro-inflammatory responses in monocytes and differentiating macrophages , 2013, Molecules and cells.

[37]  V. LeBleu,et al.  Identification of human epididymis protein-4 as a fibroblast-derived mediator of fibrosis , 2013, Nature Medicine.

[38]  L. Ramalho,et al.  Renal macrophage infiltration is associated with a poor outcome in IgA nephropathy , 2012, Clinics.

[39]  K. Lai Pathogenesis of IgA nephropathy , 2012, Nature Reviews Nephrology.

[40]  Wei Wang,et al.  A genome-wide association study in Han Chinese identifies multiple susceptibility loci for IgA nephropathy , 2011, Nature Genetics.

[41]  Xueyuan Bai,et al.  Bioinformatics Analysis of Proteomic Profiles During the Process of Anti-Thy1 Nephritis* , 2011, Molecular & Cellular Proteomics.

[42]  T. Wynn,et al.  Protective and pathogenic functions of macrophage subsets , 2011, Nature Reviews Immunology.

[43]  F. Hildebrandt,et al.  Exome sequencing reveals cubilin mutation as a single-gene cause of proteinuria. , 2011, Journal of the American Society of Nephrology : JASN.

[44]  Mitsuo Kato,et al.  A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. , 2011, Kidney international.

[45]  Mark Henkelman,et al.  Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. , 2011, The Journal of clinical investigation.

[46]  Loreto Gesualdo,et al.  Genome-wide association study identifies susceptibility loci for IgA nephropathy , 2011, Nature Genetics.

[47]  Marina Feric,et al.  Large-scale phosphoproteomic analysis of membrane proteins in renal proximal and distal tubule. , 2011, American journal of physiology. Cell physiology.

[48]  Youhua Liu New insights into epithelial-mesenchymal transition in kidney fibrosis. , 2010, Journal of the American Society of Nephrology : JASN.

[49]  G. Cai,et al.  Immunoglobulin A Nephropathy in China: Progress and Challenges , 2009, American Journal of Nephrology.

[50]  Lior Pachter,et al.  Sequence Analysis , 2020, Definitions.

[51]  Markus M. Rinschen,et al.  Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct , 2009, Proceedings of the National Academy of Sciences.

[52]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[53]  W. Glass,et al.  Expression of α-Actinin-1 in Human Glomerular Mesangial Cells In Vivo and In Vitro , 2008, Experimental biology and medicine.

[54]  A. Tarantal,et al.  Collecting duct epithelial-mesenchymal transition in fetal urinary tract obstruction. , 2007, Kidney international.

[55]  M. Hattori,et al.  Glomerular Expression of Plasmalemmal Vesicle‐Associated Protein‐1 in Patients with Transplant Glomerulopathy , 2007, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[56]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  E. Neilson,et al.  Fibroblast-specific protein 1 is a specific prognostic marker for renal survival in patients with IgAN. , 2005, Kidney international.

[58]  Susan S. Taylor,et al.  PDZK1: II. an anchoring site for the PKA-binding protein D-AKAP2 in renal proximal tubular cells. , 2003, Kidney international.

[59]  H. Amlal,et al.  Resistance of mTAL Na+-dependent transporters and collecting duct aquaporins to dehydration in 7-month-old rats. , 2003, Kidney international.

[60]  K. Sharma,et al.  Role of Smad4 on TGF-beta-induced extracellular matrix stimulation in mesangial cells. , 2003, Kidney international.

[61]  S. Sasayama,et al.  Correlation between the Severity of Clinicopathological Parameters and Whole Blood Interferon-α Production Capacity in Active Phase IgA Nephropathy Patients , 2001, Nephron.

[62]  P. Brandtzaeg,et al.  The J Chain Is Essential for Polymeric Ig Receptor-Mediated Epithelial Transport of IgA1 , 2001, The Journal of Immunology.

[63]  H. Gröne,et al.  Small proteoglycans in human diabetic nephropathy: discrepancy between glomerular expression and protein accumulation of decorin, biglycan, lumican, and fibromodulin , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[64]  M. Yasui,et al.  Aquaporin-6: An intracellular vesicle water channel protein in renal epithelia. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[65]  P. Nelson,et al.  Involvement of the protein kinase C substrate, SSeCKS, in the actin-based stellate morphology of mesangial cells. , 1999, Journal of cell science.

[66]  H. Rupprecht,et al.  Cell-matrix interactions in the glomerular mesangium. , 1996, Kidney international.

[67]  H. Nagura,et al.  Mesangial deposition of J chain-linked polymeric IgA in IgA nephropathy. , 1983, Nephron.

[68]  M. Hardy,et al.  Disappearance of glomerular mesangial IgA deposits after renal allograft transplantation. , 1982, Transplantation.

[69]  J. Berger,et al.  [Intercapillary deposits of IgA-IgG]. , 1968, Journal d'urologie et de nephrologie.

[70]  J. Novak,et al.  IgA nephropathy , 2016, Nature Reviews Disease Primers.

[71]  A. Gharavi,et al.  Genetic studies of IgA nephropathy: what have we learned from genome-wide association studies. , 2013, Contributions to nephrology.

[72]  D. Harris,et al.  Macrophages in renal disease. , 2011, Journal of the American Society of Nephrology : JASN.

[73]  A. Rosen,et al.  Type I interferons: crucial participants in disease amplification in autoimmunity , 2010, Nature Reviews Rheumatology.

[74]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[75]  C. Alpers,et al.  A new look at platelet-derived growth factor in renal disease. , 2008, Journal of the American Society of Nephrology : JASN.

[76]  Youhua Liu Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. , 2004, Journal of the American Society of Nephrology : JASN.

[77]  D. Serón,et al.  The role of interstitial infiltrates in IgA nephropathy: a study with monoclonal antibodies. , 1989, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[78]  M. Koshland The coming of age of the immunoglobulin J chain. , 1985, Annual review of immunology.