Lidar supported estimators of wood volume and aboveground biomass from the Danish national forest inventory (2012–2016)

Abstract National forest inventories (NFI) provide estimates of forest resources at the national and regional level but are also increasingly used as basis for mapping forest resources based on remotely sensed data. Such maps procure local estimates of forest resources but may also improve precision of national and regional estimates. Supported by a countrywide airborne laser scanning (circa 2014) and a national land-use map (circa 2014), direct (DI), model-assisted (MA), and model calibrated (MC) estimates of wood volume (V) and aboveground biomass (AGB) densities in forest areas derived from the Danish NFI (2012–2016) are presented. Nonlinear models with three LiDAR metrics are used to predict V and AGB in forested areas. According to these models, the predicted values of V and AGB in sample plots missed in the field inventory was lower than in those visited in the field; we therefore opted for estimation with multiple (stochastic) imputations. MA estimates for the country suggested a 2% lower level of both V and AGB densities with errors 45% lower than estimated errors in DI results. National MC estimates were close to the DI estimates with an error approximately 40% lower than errors in DI estimates yet 5% greater than the MA estimates of error. Multiple imputations had the strongest impact on DI estimates, but only a weak impact on MA and MC results.

[1]  E. Næsset,et al.  The effects of temporal differences between map and ground data on map-assisted estimates of forest area and biomass , 2015, Annals of Forest Science.

[2]  L. Mark Berliner,et al.  Combining Information Across Spatial Scales , 2005, Technometrics.

[3]  R. Fournier,et al.  Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data , 2015 .

[4]  Michael G. Kenward,et al.  Multiple Imputation and its Application , 2013 .

[5]  Terje Gobakken,et al.  Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in tropical rain forests of Tanzania , 2015, Carbon Balance and Management.

[6]  Michael J. Falkowski,et al.  A review of methods for mapping and prediction of inventory attributes for operational forest management , 2014 .

[7]  J. Chilès,et al.  Geostatistics: Modeling Spatial Uncertainty , 1999 .

[8]  T. Nord-Larsen,et al.  Estimation of forest resources from a country wide laser scanning survey and national forest inventory data , 2012 .

[9]  R. Valliant,et al.  A comparison of variance estimators for poststratification to estimated control totals , 2010 .

[10]  P. Corona,et al.  Design-based treatment of missing data in forest inventories using canopy heights from aerial laser scanning , 2014 .

[11]  Adrian Lanz,et al.  Integrating remote sensing and past inventory data under the new annual design of the Swiss National Forest Inventory using three-phase design-based regression estimation , 2014 .

[12]  Morton B. Brown,et al.  Robust Tests for the Equality of Variances , 1974 .

[13]  Carl-Erik Särndal,et al.  Model Assisted Survey Sampling , 1997 .

[14]  Ronald E. McRoberts,et al.  Effects of uncertainty in model predictions of individual tree volume on large area volume estimates , 2014 .

[15]  Thomas Nord-Larsen,et al.  Developing an airborne laser scanning dominant height model from a countrywide scanning survey and national forest inventory data , 2010 .

[16]  Sixten Lundström,et al.  Estimation in Surveys with Nonresponse , 2005 .

[17]  J. P. Skovsgaard,et al.  Functions for biomass and basic density of stem, crown and root system of Norway spruce (Picea abies (L.) Karst.) in Denmark , 2011 .

[18]  C. F. Wu,et al.  Resampling Inference with Complex Survey Data , 1988 .

[19]  S. Magnussen,et al.  Model errors in tree biomass estimates computed with an approximation to a missing covariance matrix , 2015, Carbon Balance and Management.

[20]  Göran Ståhl,et al.  Use of models in large-area forest surveys: comparing model-assisted, model-based and hybrid estimation , 2016, Forest Ecosystems.

[21]  Andreas Hill,et al.  New regression estimators in forest inventories with two-phase sampling and partially exhaustive information , 2013 .

[22]  S. Magnussen,et al.  Error propagation in stock-difference and gain–loss estimates of a forest biomass carbon balance , 2014, European Journal of Forest Research.

[23]  E. Næsset Area-Based Inventory in Norway – From Innovation to an Operational Reality , 2014 .

[24]  Joachim Saborowski,et al.  Spatial prediction of forest stand variables , 2009, European Journal of Forest Research.

[25]  Changbao Wu,et al.  A Model-Calibration Approach to Using Complete Auxiliary Information From Survey Data , 2001 .

[26]  S. Goetz,et al.  A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing , 2013 .

[27]  R. Lehtonen,et al.  Chapter 31 - Design-based Methods of Estimation for Domains and Small Areas , 2009 .

[28]  Barbara Koch,et al.  Evaluation of most similar neighbour and random forest methods for imputing forest inventory variables using data from target and auxiliary stands , 2012 .

[29]  R. McRoberts Compensating for missing plot observations in forest inventory estimation , 2003 .

[30]  Daniel Mandallaz,et al.  Sampling Techniques for Forest Inventories , 2007 .

[31]  M. Maltamo,et al.  Combining ALS and NFI training data for forest management planning: a case study in Kuortane, Western Finland , 2009, European Journal of Forest Research.

[32]  Alan H. Welsh,et al.  Improving the Efficiency and Precision of Tree Counts in Pine Plantations Using Airborne LiDAR Data and Flexible-Radius Plots: Model-Based and Design-Based Approaches , 2015 .

[33]  Changbao Wu,et al.  Optimal calibration estimators in survey sampling , 2003 .

[34]  S. Haneuse,et al.  On the Assessment of Monte Carlo Error in Simulation-Based Statistical Analyses , 2009, The American statistician.

[35]  D. Mandallaz,et al.  Design-based regression estimation of net change for forest inventories , 2015 .

[36]  Anders Tærø Nielsen,et al.  Biomass, stem basic density and expansion factor functions for five exotic conifers grown in Denmark , 2015 .

[37]  Wayne A. Fuller,et al.  Fractional hot deck imputation , 2004 .

[38]  R. McRoberts Imputatoin and Model-Based Updating Technique for Annual Forest Inventories , 2001 .

[39]  P. Deusen,et al.  Annual forest inventory statistical concepts with emphasis on multiple imputation , 1997 .

[40]  E. Næsset,et al.  An Estimator of Variance for Two-Stage Ratio Regression Estimators , 2014 .

[41]  D. Rubin Multiple imputation for nonresponse in surveys , 1989 .

[42]  Johan Swärd,et al.  Designing a new national forest survey for Sweden , 1987 .

[43]  Philippe Lejeune,et al.  Comparison of UAS photogrammetric products for tree detection and characterization of coniferous stands , 2017 .

[44]  P. Corona,et al.  Mapping by spatial predictors exploiting remotely sensed and ground data: A comparative design-based perspective , 2014 .

[45]  R. Valliant,et al.  Survey Weights: A Step-by-step Guide to Calculation , 2017 .

[46]  Terje Gobakken,et al.  LiDAR-supported estimation of change in forest biomass with time-invariant regression models , 2015 .

[47]  James A. Westfall,et al.  Measurement repeatability of a large-scale inventory of forest fuels , 2007 .

[48]  Annika Kangas,et al.  Model-assisted forest inventory with parametric, semiparametric, and nonparametric models , 2016 .

[49]  Ronald E. McRoberts,et al.  Using satellite imagery as ancillary data for increasing the precision of estimates for the Forest Inventory and Analysis program of the USDA Forest Service , 2005 .

[50]  Jean D. Opsomer,et al.  Model-Assisted Survey Estimation with Modern Prediction Techniques , 2017 .

[51]  Nicholas L. Crookston,et al.  The roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases , 2009 .

[52]  M. Holopainen,et al.  Model-assisted estimation of growing stock volume using different combinations of LiDAR and Landsat data as auxiliary information , 2015 .

[53]  Liviu Theodor Ene,et al.  Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass , 2016 .

[54]  Robert C. Parker,et al.  LiDAR forest inventory with single-tree, double-, and single-phase procedures. , 2009 .

[55]  Gretchen G. Moisen,et al.  Model-Assisted Survey Regression Estimation with the Lasso , 2017 .

[56]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[57]  Björn Nilsson,et al.  Using Optical Satellite Data and Airborne Lidar Data for a Nationwide Sampling Survey , 2015, Remote. Sens..

[58]  Steen Magnussen,et al.  Stochastic resampling techniques for quantifying error propagations in forest field experiments , 1997 .

[59]  R M Fewster,et al.  Variance Estimation for Systematic Designs in Spatial Surveys , 2011, Biometrics.

[60]  E. Tomppo,et al.  The Finnish National Forest Inventory , 1995 .

[61]  MandallazDaniel,et al.  New regression estimators in forest inventories with two-phase sampling and partially exhaustive information: a design-based Monte Carlo approach with applications to small-area estimation , 2013 .

[62]  M. Vastaranta,et al.  Status and prospects for LiDAR remote sensing of forested ecosystems , 2013 .

[63]  Ingrid Seynave,et al.  Recent changes in forest productivity: An analysis of national forest inventory data for common beech (Fagus sylvatica L.) in north-eastern France , 2010 .

[64]  Eva Petkova,et al.  A Paradoxical Result in Estimating Regression Coefficients , 2014, The American statistician.

[65]  K. Wolter Introduction to Variance Estimation , 1985 .

[66]  Joanne C. White,et al.  Lidar sampling for large-area forest characterization: A review , 2012 .

[67]  L. Fattorini,et al.  Design‐based treatment of unit nonresponse in environmental surveys using calibration weighting , 2013, Biometrical journal. Biometrische Zeitschrift.

[68]  R. Turner,et al.  Application of LiDAR data to maximise the efficiency of inventory plots in softwood plantations , 2015, New Zealand Journal of Forestry Science.

[69]  M. Nilsson,et al.  A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory , 2017 .

[70]  James A. Westfall,et al.  A primer for nonresponse in the US forest inventory and analysis program , 2012, Environmental Monitoring and Assessment.

[71]  Terje Gobakken,et al.  Inference for lidar-assisted estimation of forest growing stock volume , 2013 .

[72]  Claude Vidal,et al.  National Forest Inventories Assessment of Wood Availability and Use , 2016 .

[73]  Jae Kwang Kim Calibration estimation using exponential tilting in sample surveys , 2010 .