Noniterative data-driven design of multivariable controllers

In this paper, a data-driven technique is proposed to deal with multivariable fixed-order controller design. The method is based on the Virtual Reference Feedback Tuning (VRFT) philosophy and thus does not require any model of the plant. As far as the authors are aware, this is the first noniterative method that allows one to tune either tracking and decoupling terms of a MIMO controller. Unlike standard VRFT for SISO systems, extended instrumental variables and variance weighting are used to counteract the effect of noise and achieve consistent controller estimate with a single set of input-output data. The proposed strategy is validated on three banchmark examples.

[1]  Angelika Bunse-Gerstner,et al.  h2-norm optimal model reduction for large scale discrete dynamical MIMO systems , 2010, J. Comput. Appl. Math..

[2]  Ljubisa Miskovic,et al.  Iterative controller tuning by minimization of a generalized decorrelation criterion , 2003 .

[3]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[4]  Sergio M. Savaresi,et al.  Virtual reference feedback tuning: a direct method for the design of feedback controllers , 2002, Autom..

[5]  Masashi Nakamoto AN APPLICATION OF THE VIRTUAL REFERENCE FEEDBACK TUNING METHOD TO A MULTIVARIABLE PROCESS CONTROL , 2005 .

[6]  T. Söderström,et al.  Instrumental variable methods for system identification , 1983 .

[7]  Håkan Hjalmarsson,et al.  From experiment design to closed-loop control , 2005, Autom..

[8]  M. C. Campia,et al.  Virtual reference feedback tuning: a direct method for the design of feedback controllers , 2002 .

[9]  Petre Stoica,et al.  MIMO system identification: state-space and subspace approximations versus transfer function and instrumental variables , 2000, IEEE Trans. Signal Process..

[10]  Sergio M. Savaresi,et al.  Direct nonlinear control design: the virtual reference feedback tuning (VRFT) approach , 2006, IEEE Transactions on Automatic Control.

[11]  A. Karimi,et al.  Non-iterative data-driven controller tuning using the correlation approach , 2007, 2007 European Control Conference (ECC).

[12]  Sergio M. Savaresi,et al.  Virtual Reference Feedback Tuning for linear parameter-varying systems , 2011 .

[13]  Michel Gevers,et al.  Correlation-based tuning of decoupling multivariable controllers , 2007, Autom..

[14]  Sergio M. Savaresi,et al.  Approximate feedback linearization of discrete-time non-linear systems using virtual input direct design , 1997 .

[15]  H. Hjalmarsson Efficient tuning of linear multivariable controllers using iterative feedback tuning , 1999 .

[16]  Masashi Nakamoto,et al.  An Application of Iterative Feedback Tuning for a Process Control , 2003 .

[17]  Svante Gunnarsson,et al.  Iterative feedback tuning: theory and applications , 1998 .

[18]  Sergio M. Savaresi,et al.  Approximate I/O Feedback Linearization of Discrete-Time Non-Linear Systems via Virtual Input Direct Design , 1998, Autom..

[19]  A. Karimi,et al.  Iterative correlation‐based controller tuning , 2004 .

[20]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .