Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals
暂无分享,去创建一个
Trygve Helgaker | Kenneth Ruud | Rika Kobayashi | K. Ruud | T. Helgaker | Poul Jo | rgensen | R. Kobayashi | Keld L. Bak | Hans Jo | rgen Aa. Jensen | Poul Jo | H. Jo
[1] J. Gauss. Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts , 1993 .
[2] Trygve Helgaker,et al. Hartree-Fock limit magnetizabilities from London orbitals , 1993 .
[3] K. Ruud,et al. Gauge-origin independent multiconfigurational self-consistent-field theory for vibrational circular dichroism , 1993 .
[4] D. M. Bishop,et al. Calculations of magnetic properties. II. Electron‐correlated nuclear shielding constants for nine small molecules , 1993 .
[5] W. Kutzelnigg,et al. The MC-IGLO method , 1993 .
[6] J. Tossell,et al. Nuclear magnetic shieldings and molecular structure , 1993 .
[7] Hans W. Horn,et al. Direct computation of second-order SCF properties of large molecules on workstation computers with an application to large carbon clusters , 1992 .
[8] J. Gauss. Calculation of NMR chemical shifts at second-order many-body perturbation theory using gauge-including atomic orbitals , 1992 .
[9] T. Helgaker,et al. An electronic Hamiltonian for origin independent calculations of magnetic properties , 1991 .
[10] Peter Pulay,et al. Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .
[11] J. Geertsen,et al. Nuclear magnetic shieldings and spin rotation constants of HF and N2 , 1990 .
[12] D. Yeager,et al. A multiconfigurational linear response study of N2 , 1989 .
[13] A. Jameson,et al. Gas-phase 13C chemical shifts in the zero-pressure limit: refinements to the absolute shielding scale for 13C , 1987 .
[14] H. Sellers. Analytical force constant calculation as a minimization problem , 1986 .
[15] Aage E. Hansen,et al. Localized orbital/local origin method for calculation and analysis of NMR shieldings. Applications to 13C shielding tensors , 1985 .
[16] J. Olsen,et al. Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .
[17] R. Wasylishen,et al. A more reliable oxygen‐17 absolute chemical shielding scale , 1984 .
[18] R. Wasylishen,et al. An approximate absolute 33S nuclear magnetic shielding scale , 1984 .
[19] W. Kutzelnigg. Theory of Magnetic Susceptibilities and NMR Chemical Shifts in Terms of Localized Quantities , 1982 .
[20] S. Wille,et al. 15N nuclear magnetic shielding scale from gas phase studies , 1980 .
[21] T. Gierke,et al. Empirical evaluation of the individual elements in the nuclear diamagnetic shielding tensor by the atom dipole method , 1972 .
[22] R. Ditchfield,et al. Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility , 1972 .
[23] C. D. Cornwell,et al. Vibrational Corrections to the Nuclear‐Magnetic Shielding and Spin–Rotation Constants for Hydrogen Fluoride. Shielding Scale for 19F , 1968 .
[24] C. Anderson,et al. NUCLEAR MAGNETIC ANTISHIELDING OF NUCLEI IN MOLECULES. MAGNETIC MOMENTS OF F$sup 19$, N$sup 14$, AND N$sup 1$$sup 5$ , 1964 .
[25] R. Nyholm,et al. Oxygen-17 nuclear magnetic resonance of inorganic compounds , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[26] H. Bernstein,et al. Medium Effects in Proton Magnetic Resonance. I. Gases , 1962 .
[27] H. F. Hameka. Theory of Magnetic Properties of Molecules with Particular Emphasis on the Hydrogen Molecule , 1962 .
[28] H. F. Hameka. Berechnung der magnetischen Eigenschaften des Wasserstoffmoleküls , 1959 .
[29] H. F. Hameka. On the nuclear magnetic shielding in the hydrogen molecule , 1958 .
[30] F. London,et al. Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .