Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals

Nuclear shielding calculations are presented for multiconfigurational self‐consistent field wave functions using London atomic orbitals (gauge invariant atomic orbitals). Calculations of nuclear shieldings for eight molecules (H2O, H2S, CH4, N2, CO, HF, F2, and SO2) are presented and compared to corresponding individual gauges for localized orbitals (IGLO) results. The London results show better basis set convergence than IGLO, especially for heavier atoms. It is shown that the choice of active space is crucial for determination of accurate nuclear shielding constants.

[1]  J. Gauss Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts , 1993 .

[2]  Trygve Helgaker,et al.  Hartree-Fock limit magnetizabilities from London orbitals , 1993 .

[3]  K. Ruud,et al.  Gauge-origin independent multiconfigurational self-consistent-field theory for vibrational circular dichroism , 1993 .

[4]  D. M. Bishop,et al.  Calculations of magnetic properties. II. Electron‐correlated nuclear shielding constants for nine small molecules , 1993 .

[5]  W. Kutzelnigg,et al.  The MC-IGLO method , 1993 .

[6]  J. Tossell,et al.  Nuclear magnetic shieldings and molecular structure , 1993 .

[7]  Hans W. Horn,et al.  Direct computation of second-order SCF properties of large molecules on workstation computers with an application to large carbon clusters , 1992 .

[8]  J. Gauss Calculation of NMR chemical shifts at second-order many-body perturbation theory using gauge-including atomic orbitals , 1992 .

[9]  T. Helgaker,et al.  An electronic Hamiltonian for origin independent calculations of magnetic properties , 1991 .

[10]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[11]  J. Geertsen,et al.  Nuclear magnetic shieldings and spin rotation constants of HF and N2 , 1990 .

[12]  D. Yeager,et al.  A multiconfigurational linear response study of N2 , 1989 .

[13]  A. Jameson,et al.  Gas-phase 13C chemical shifts in the zero-pressure limit: refinements to the absolute shielding scale for 13C , 1987 .

[14]  H. Sellers Analytical force constant calculation as a minimization problem , 1986 .

[15]  Aage E. Hansen,et al.  Localized orbital/local origin method for calculation and analysis of NMR shieldings. Applications to 13C shielding tensors , 1985 .

[16]  J. Olsen,et al.  Linear and nonlinear response functions for an exact state and for an MCSCF state , 1985 .

[17]  R. Wasylishen,et al.  A more reliable oxygen‐17 absolute chemical shielding scale , 1984 .

[18]  R. Wasylishen,et al.  An approximate absolute 33S nuclear magnetic shielding scale , 1984 .

[19]  W. Kutzelnigg Theory of Magnetic Susceptibilities and NMR Chemical Shifts in Terms of Localized Quantities , 1982 .

[20]  S. Wille,et al.  15N nuclear magnetic shielding scale from gas phase studies , 1980 .

[21]  T. Gierke,et al.  Empirical evaluation of the individual elements in the nuclear diamagnetic shielding tensor by the atom dipole method , 1972 .

[22]  R. Ditchfield,et al.  Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility , 1972 .

[23]  C. D. Cornwell,et al.  Vibrational Corrections to the Nuclear‐Magnetic Shielding and Spin–Rotation Constants for Hydrogen Fluoride. Shielding Scale for 19F , 1968 .

[24]  C. Anderson,et al.  NUCLEAR MAGNETIC ANTISHIELDING OF NUCLEI IN MOLECULES. MAGNETIC MOMENTS OF F$sup 19$, N$sup 14$, AND N$sup 1$$sup 5$ , 1964 .

[25]  R. Nyholm,et al.  Oxygen-17 nuclear magnetic resonance of inorganic compounds , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  H. Bernstein,et al.  Medium Effects in Proton Magnetic Resonance. I. Gases , 1962 .

[27]  H. F. Hameka Theory of Magnetic Properties of Molecules with Particular Emphasis on the Hydrogen Molecule , 1962 .

[28]  H. F. Hameka Berechnung der magnetischen Eigenschaften des Wasserstoffmoleküls , 1959 .

[29]  H. F. Hameka On the nuclear magnetic shielding in the hydrogen molecule , 1958 .

[30]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .