Spacecraft Uncertainty Propagation Using Gaussian Mixture Models and Polynomial Chaos Expansions

Polynomial chaos expansion and Gaussian mixture models are combined in a hybrid fashion to propagate state uncertainty for spacecraft with initial Gaussian errors. Polynomial chaos expansion models uncertainty by performing an expansion using orthogonal polynomials. The accuracy of polynomial chaos expansion for a given problem can be improved by increasing the order of the orthogonal polynomial expansion. The number of terms in the orthogonal polynomial expansion increases factorially with dimensionality of the problem, thereby reducing the effectiveness of the polynomial chaos expansion approach for problems of moderately high dimensionality. This paper shows a combination of Gaussian mixture model and polynomial chaos expansion, Gaussian mixture model–polynomial chaos expansion as an alternative form of the multi-element polynomial chaos expansion. Gaussian mixture model–polynomial chaos expansion reduces the overall order required to reach a desired accuracy. The initial distribution is converted to a...

[1]  S. V. Gupta Propagation of Uncertainty , 2012 .

[2]  N. Cutland,et al.  On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  Richard I. Abbot,et al.  Decision Support in Space Situational Awareness , 2007 .

[4]  Aubrey B. Poore,et al.  A comparative study of new non-linear uncertainty propagation methods for space surveillance , 2014, Defense + Security Symposium.

[5]  Ivo Babuška,et al.  The h, p and h-p version of the finite element method: basis theory and applications , 1992 .

[6]  Nitin Arora,et al.  Parallel Computation of Trajectories Using Graphics Processing Units and Interpolated Gravity Models , 2015 .

[7]  Aubrey B. Poore,et al.  Beyond covariance realism: a new metric for uncertainty realism , 2014, Defense + Security Symposium.

[8]  Alireza Doostan,et al.  Coherence motivated sampling and convergence analysis of least squares polynomial Chaos regression , 2014, 1410.1931.

[9]  Brandon A. Jones,et al.  Satellite Collision Probability Estimation Using Polynomial Chaos , 2013 .

[10]  John L. Junkins,et al.  Non-Gaussian error propagation in orbital mechanics , 1996 .

[11]  Hugh F. Durrant-Whyte,et al.  On entropy approximation for Gaussian mixture random vectors , 2008, 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.

[12]  Alireza Doostan,et al.  Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..

[13]  Yang Cheng,et al.  Sparse Gauss-Hermite Quadrature Filter with Application to Spacecraft Attitude Estimation , 2011 .

[14]  P. Nair,et al.  Aircraft Robust Trajectory Optimization Using Nonintrusive Polynomial Chaos , 2014 .

[15]  Simo Särkkä,et al.  Fourier-Hermite Kalman Filter , 2012, IEEE Transactions on Automatic Control.

[16]  Chris Sabol,et al.  Comparison of Covariance Based Track Association Approaches Using Simulated Radar Data , 2012 .

[17]  B. Rozovskii,et al.  Fourier--Hermite Expansions for Nonlinear Filtering , 2000 .

[18]  Jared M. Maruskin,et al.  Fundamental limits on spacecraft orbit uncertainty and distribution propagation , 2006 .

[19]  Geoffrey T. Parks,et al.  Robust Aerodynamic Design Optimization Using Polynomial Chaos , 2009 .

[20]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[21]  Vivek Vittaldev,et al.  Collision probability for space objects using Gaussian mixture models , 2013 .

[22]  Wen-mei W. Hwu,et al.  CUDA-Lite: Reducing GPU Programming Complexity , 2008, LCPC.

[23]  Richard W. Ghrist,et al.  Impact of Non-Gaussian Error Volumes on Conjunction Assessment Risk Analysis , 2012 .

[24]  J. Crassidis,et al.  AAS 15-423 GENERALIZED GAUSSIAN CUBATURE FOR NONLINEAR FILTERING , 2015 .

[25]  Kyle J. DeMars,et al.  Entropy-Based Approach for Uncertainty Propagation of Nonlinear Dynamical Systems , 2013 .

[26]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[27]  Puneet Singla,et al.  The Conjugate Unscented Transform — An approach to evaluate multi-dimensional expectation integrals , 2012, 2012 American Control Conference (ACC).

[28]  Frank Mueller,et al.  Languages and Compilers for Parallel Computing , 2015, Lecture Notes in Computer Science.

[29]  M. Nayak Impact of National Space Policy on Orbital Debris Mitigation and US Air Force End of Life Satellite Operations , 2012 .

[30]  Hyochoong Bang,et al.  Adaptive sparse grid quadrature filter for spacecraft relative navigation , 2013 .

[31]  T. Singh,et al.  Uncertainty Propagation for Nonlinear Dynamic Systems Using Gaussian Mixture Models , 2008 .

[32]  G. Karniadakis,et al.  An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .

[33]  A. Doostan,et al.  Nonlinear Propagation of Orbit Uncertainty Using Non-Intrusive Polynomial Chaos , 2013 .

[34]  Alan Genz,et al.  Fully symmetric interpolatory rules for multiple integrals , 1986 .

[35]  Shovan Bhaumik,et al.  Cubature quadrature Kalman filter , 2013, IET Signal Process..

[36]  Byron D. Tapley,et al.  Chapter 4 – Fundamentals of Orbit Determination , 2004 .

[37]  Ming Xin,et al.  High-degree cubature Kalman filter , 2013, Autom..

[38]  Kyle J. DeMars,et al.  Probabilistic Initial Orbit Determination Using Gaussian Mixture Models , 2013 .

[39]  Aubrey B. Poore,et al.  Nonlinear Uncertainty Propagation in Orbital Elements and Transformation to Cartesian Space Without Loss of Realism , 2014 .

[40]  T. W. Anderson On the Distribution of the Two-Sample Cramer-von Mises Criterion , 1962 .

[41]  Julian J. Faraway,et al.  The Exact and Asymptotic Distributions of Cramer-von Mises Statistics , 1996 .

[42]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[43]  Kyle J. DeMars,et al.  Collision Probability with Gaussian Mixture Orbit Uncertainty , 2014 .

[44]  B. Tapley,et al.  Statistical Orbit Determination , 2004 .

[45]  Puneet Singla,et al.  Nonlinear uncertainty propagation for perturbed two-body orbits , 2014 .

[46]  Niels Kjølstad Poulsen,et al.  New developments in state estimation for nonlinear systems , 2000, Autom..

[47]  Steven L. Brunton,et al.  Long-time uncertainty propagation using generalized polynomial chaos and flow map composition , 2014, J. Comput. Phys..

[48]  Thomas A. Zang,et al.  Stochastic approaches to uncertainty quantification in CFD simulations , 2005, Numerical Algorithms.

[49]  Subhash Challa,et al.  Nonlinear filtering via generalized Edgeworth series and Gauss-Hermite quadrature , 2000, IEEE Trans. Signal Process..

[50]  Sergey Oladyshkin,et al.  Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion , 2012, Reliab. Eng. Syst. Saf..

[51]  Brandon A. Jones,et al.  Postmaneuver Collision Probability Estimation Using Sparse Polynomial Chaos Expansions , 2015 .

[52]  S. Haykin,et al.  Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.

[53]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[54]  Christopher D. Karlgaard,et al.  Parallelized sigma point and particle filters for navigation problems , 2013 .

[55]  Aubrey B. Poore,et al.  Gaussian Sum Filters for Space Surveillance: Theory and Simulations , 2011 .

[56]  Leszek F. Demkowicz,et al.  A Fully Automatic hp-Adaptivity , 2002, J. Sci. Comput..

[57]  Aubrey B. Poore,et al.  Gauss von Mises Distribution for Improved Uncertainty Realism in Space Situational Awareness , 2014, SIAM/ASA J. Uncertain. Quantification.

[58]  Stephen P. Boyd,et al.  Recent Advances in Learning and Control , 2008, Lecture Notes in Control and Information Sciences.

[59]  R. Park,et al.  Nonlinear Mapping of Gaussian Statistics: Theory and Applications to Spacecraft Trajectory Design , 2006 .

[60]  N. Wiener The Homogeneous Chaos , 1938 .

[61]  Alireza Doostan,et al.  Satellite collision probability estimation using polynomial chaos expansions , 2013 .

[62]  Chris Sabol,et al.  Linearized Orbit Covariance Generation and Propagation Analysis via Simple Monte Carlo Simulations (Preprint) , 2010 .