Spacecraft Uncertainty Propagation Using Gaussian Mixture Models and Polynomial Chaos Expansions
暂无分享,去创建一个
[1] S. V. Gupta. Propagation of Uncertainty , 2012 .
[2] N. Cutland,et al. On homogeneous chaos , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.
[3] Richard I. Abbot,et al. Decision Support in Space Situational Awareness , 2007 .
[4] Aubrey B. Poore,et al. A comparative study of new non-linear uncertainty propagation methods for space surveillance , 2014, Defense + Security Symposium.
[5] Ivo Babuška,et al. The h, p and h-p version of the finite element method: basis theory and applications , 1992 .
[6] Nitin Arora,et al. Parallel Computation of Trajectories Using Graphics Processing Units and Interpolated Gravity Models , 2015 .
[7] Aubrey B. Poore,et al. Beyond covariance realism: a new metric for uncertainty realism , 2014, Defense + Security Symposium.
[8] Alireza Doostan,et al. Coherence motivated sampling and convergence analysis of least squares polynomial Chaos regression , 2014, 1410.1931.
[9] Brandon A. Jones,et al. Satellite Collision Probability Estimation Using Polynomial Chaos , 2013 .
[10] John L. Junkins,et al. Non-Gaussian error propagation in orbital mechanics , 1996 .
[11] Hugh F. Durrant-Whyte,et al. On entropy approximation for Gaussian mixture random vectors , 2008, 2008 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems.
[12] Alireza Doostan,et al. Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies , 2014, J. Comput. Phys..
[13] Yang Cheng,et al. Sparse Gauss-Hermite Quadrature Filter with Application to Spacecraft Attitude Estimation , 2011 .
[14] P. Nair,et al. Aircraft Robust Trajectory Optimization Using Nonintrusive Polynomial Chaos , 2014 .
[15] Simo Särkkä,et al. Fourier-Hermite Kalman Filter , 2012, IEEE Transactions on Automatic Control.
[16] Chris Sabol,et al. Comparison of Covariance Based Track Association Approaches Using Simulated Radar Data , 2012 .
[17] B. Rozovskii,et al. Fourier--Hermite Expansions for Nonlinear Filtering , 2000 .
[18] Jared M. Maruskin,et al. Fundamental limits on spacecraft orbit uncertainty and distribution propagation , 2006 .
[19] Geoffrey T. Parks,et al. Robust Aerodynamic Design Optimization Using Polynomial Chaos , 2009 .
[20] Dongbin Xiu,et al. The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..
[21] Vivek Vittaldev,et al. Collision probability for space objects using Gaussian mixture models , 2013 .
[22] Wen-mei W. Hwu,et al. CUDA-Lite: Reducing GPU Programming Complexity , 2008, LCPC.
[23] Richard W. Ghrist,et al. Impact of Non-Gaussian Error Volumes on Conjunction Assessment Risk Analysis , 2012 .
[24] J. Crassidis,et al. AAS 15-423 GENERALIZED GAUSSIAN CUBATURE FOR NONLINEAR FILTERING , 2015 .
[25] Kyle J. DeMars,et al. Entropy-Based Approach for Uncertainty Propagation of Nonlinear Dynamical Systems , 2013 .
[26] H. Sorenson,et al. Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .
[27] Puneet Singla,et al. The Conjugate Unscented Transform — An approach to evaluate multi-dimensional expectation integrals , 2012, 2012 American Control Conference (ACC).
[28] Frank Mueller,et al. Languages and Compilers for Parallel Computing , 2015, Lecture Notes in Computer Science.
[29] M. Nayak. Impact of National Space Policy on Orbital Debris Mitigation and US Air Force End of Life Satellite Operations , 2012 .
[30] Hyochoong Bang,et al. Adaptive sparse grid quadrature filter for spacecraft relative navigation , 2013 .
[31] T. Singh,et al. Uncertainty Propagation for Nonlinear Dynamic Systems Using Gaussian Mixture Models , 2008 .
[32] G. Karniadakis,et al. An adaptive multi-element generalized polynomial chaos method for stochastic differential equations , 2005 .
[33] A. Doostan,et al. Nonlinear Propagation of Orbit Uncertainty Using Non-Intrusive Polynomial Chaos , 2013 .
[34] Alan Genz,et al. Fully symmetric interpolatory rules for multiple integrals , 1986 .
[35] Shovan Bhaumik,et al. Cubature quadrature Kalman filter , 2013, IET Signal Process..
[36] Byron D. Tapley,et al. Chapter 4 – Fundamentals of Orbit Determination , 2004 .
[37] Ming Xin,et al. High-degree cubature Kalman filter , 2013, Autom..
[38] Kyle J. DeMars,et al. Probabilistic Initial Orbit Determination Using Gaussian Mixture Models , 2013 .
[39] Aubrey B. Poore,et al. Nonlinear Uncertainty Propagation in Orbital Elements and Transformation to Cartesian Space Without Loss of Realism , 2014 .
[40] T. W. Anderson. On the Distribution of the Two-Sample Cramer-von Mises Criterion , 1962 .
[41] Julian J. Faraway,et al. The Exact and Asymptotic Distributions of Cramer-von Mises Statistics , 1996 .
[42] Jeffrey K. Uhlmann,et al. Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.
[43] Kyle J. DeMars,et al. Collision Probability with Gaussian Mixture Orbit Uncertainty , 2014 .
[44] B. Tapley,et al. Statistical Orbit Determination , 2004 .
[45] Puneet Singla,et al. Nonlinear uncertainty propagation for perturbed two-body orbits , 2014 .
[46] Niels Kjølstad Poulsen,et al. New developments in state estimation for nonlinear systems , 2000, Autom..
[47] Steven L. Brunton,et al. Long-time uncertainty propagation using generalized polynomial chaos and flow map composition , 2014, J. Comput. Phys..
[48] Thomas A. Zang,et al. Stochastic approaches to uncertainty quantification in CFD simulations , 2005, Numerical Algorithms.
[49] Subhash Challa,et al. Nonlinear filtering via generalized Edgeworth series and Gauss-Hermite quadrature , 2000, IEEE Trans. Signal Process..
[50] Sergey Oladyshkin,et al. Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion , 2012, Reliab. Eng. Syst. Saf..
[51] Brandon A. Jones,et al. Postmaneuver Collision Probability Estimation Using Sparse Polynomial Chaos Expansions , 2015 .
[52] S. Haykin,et al. Cubature Kalman Filters , 2009, IEEE Transactions on Automatic Control.
[53] Stephen P. Boyd,et al. Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.
[54] Christopher D. Karlgaard,et al. Parallelized sigma point and particle filters for navigation problems , 2013 .
[55] Aubrey B. Poore,et al. Gaussian Sum Filters for Space Surveillance: Theory and Simulations , 2011 .
[56] Leszek F. Demkowicz,et al. A Fully Automatic hp-Adaptivity , 2002, J. Sci. Comput..
[57] Aubrey B. Poore,et al. Gauss von Mises Distribution for Improved Uncertainty Realism in Space Situational Awareness , 2014, SIAM/ASA J. Uncertain. Quantification.
[58] Stephen P. Boyd,et al. Recent Advances in Learning and Control , 2008, Lecture Notes in Control and Information Sciences.
[59] R. Park,et al. Nonlinear Mapping of Gaussian Statistics: Theory and Applications to Spacecraft Trajectory Design , 2006 .
[60] N. Wiener. The Homogeneous Chaos , 1938 .
[61] Alireza Doostan,et al. Satellite collision probability estimation using polynomial chaos expansions , 2013 .
[62] Chris Sabol,et al. Linearized Orbit Covariance Generation and Propagation Analysis via Simple Monte Carlo Simulations (Preprint) , 2010 .