Field radiometric calibration of a multispectral on-the-go sensor dedicated to the characterization of vineyard foliage

Development of a multispectral on-the-go system (visible and NIR) to characterize vineyard in natural light.Implementation of a radiometric method to calibrate the images using linear and spatial interpolation.Computation of vegetation index (NDVI) from reflectance images and strong correlation with Greenseeker data.Proximal multispectral imaging system can be used to assess foliage vigor at green berry stage. The accurate assessment of the vigor and disease impact is a major challenge in precision viticulture. It is essential for managing phytosanitary treatments. Up to now, some remote sensing techniques such as aerial imagery and handheld optical sensors have been applied to grapevine characterization. However each technique provides limited, specific information about foliage. To broaden the characterization of the foliage, we developed a proximal integrated, multispectral imaging sensor that operates in the visible and near-infrared bands. It is mounted on a track-laying tractor equipped with a Greenseeker-RT-100, coupled with a GPS-RTK. As the sensor is very sensitive to the ambient light, a radiometric calibration is required: it allows producing absolute reflectance images, using a color chart. If the chart is hidden by leaves, for instance, the images are corrected using the linear interpolation method. The adaptive radiometric method is evaluated as a function of the number of neutral patches selected on the color chart during the linear regression process and the efficiency of the spatial interpolation method is assessed using a leave-one-out-cross-validation (LOOCV) method.The radiometric calibration is validated by comparison of NDVI maps produced by imagery and by the Greenseeker, a commercial system. In the early stage of berry formation, we examined and quantified the spatial patterns and demonstrated a low-cost imagery method that is capable of analyzing correctly the vigor. This corroborates the efficiency of the calibration method encouraging the use of multi-spectral imagery for other vineyard applications, such as the characterization of physiological status.

[1]  F. J. Pierce,et al.  ASPECTS OF PRECISION AGRICULTURE , 1999 .

[2]  Pablo J. Zarco-Tejada,et al.  Airborne Hyperspectral Images and Ground-Level Optical Sensors As Assessment Tools for Maize Nitrogen Fertilization , 2014, Remote. Sens..

[3]  R. Dennis Cook,et al.  Cross-Validation of Regression Models , 1984 .

[4]  Sebastian Kipp,et al.  The performance of active spectral reflectance sensors as influenced by measuring distance, device temperature and light intensity , 2014 .

[5]  C. Field,et al.  Relationships Between NDVI, Canopy Structure, and Photosynthesis in Three Californian Vegetation Types , 1995 .

[6]  A E Strever Remote sensing as a tool for viticulture research in south-africa with specific reference to terroir studies , 2007 .

[7]  Glenn Healey,et al.  Radiometric CCD camera calibration and noise estimation , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Franck Marzani,et al.  Development of a Protocol for CCD Calibration: Application to a Multispectral Imaging System , 2005, Int. J. Robotics Autom..

[9]  Franck Marzani,et al.  Une méthode pour le prétraitement et le calcul de matrices de crosstalk pour des images couleur issues d'une caméra tri-CCD , 2005 .

[10]  Adam J. Mathews Applying Geospatial Tools and Techniques to Viticulture , 2013 .

[11]  Gilbert Grenier,et al.  Etude comparative de la précision et de la rapidité de mise en oeuvre de différentes méthodes d' estimation de la surface foliaire de la vigne , 2001 .

[12]  David Michael Glenn,et al.  Characteristics of Active Spectral Sensor for Plant Sensing , 2012 .

[13]  R. Nemani,et al.  Mapping vineyard leaf area with multispectral satellite imagery , 2003 .

[14]  Fabrizio Mazzetto,et al.  COMPARING COMMERCIAL OPTICAL SENSORS FOR CROP MONITORING TASKS IN PRECISION VITICULTURE , 2009 .

[15]  A. H. Belbachir,et al.  Atmospheric correction of Earth-observation remote sensing images by Monte Carlo method , 2013, Journal of Earth System Science.

[16]  Rgv Bramley,et al.  Making sense of vineyard variability in Australia , 2003 .

[17]  Manuel Melgosa,et al.  Ripeness estimation of grape berries and seeds by image analysis , 2012 .

[18]  Matthew O. Anderson,et al.  Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle , 2012, Remote. Sens..

[19]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[20]  D. Lamb,et al.  Optical remote sensing applications in viticulture - a review , 2002 .

[21]  Michel Arnaud,et al.  Estimation et interpolation spatiale : méthodes déterministes et méthodes géostatistiques , 2000 .

[22]  A. Gitelson,et al.  Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll , 1996 .

[23]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .

[24]  David W. S. Wong,et al.  An adaptive inverse-distance weighting spatial interpolation technique , 2008, Comput. Geosci..

[25]  Alfred Stein,et al.  Spatial prediction by linear kriging , 1999 .

[26]  Brian V. Funt,et al.  Camera characterization for color research , 2002 .

[27]  Shufeng Han,et al.  DYNAMIC CALIBRATION AND IMAGE SEGMENTATION METHODS FOR MULTISPECTRAL IMAGING CROP NITROGEN DEFICIENCY SENSORS , 2005 .

[28]  J.-P. Goutouly,et al.  Capteurs optiques portables pour une viticulture de précision , 2008 .

[29]  Michel Vilain Méthodes expérimentales en agronomie : pratique et analyse , 2012 .

[30]  Jaime Lloret,et al.  A Wireless Sensor Network for Vineyard Monitoring That Uses Image Processing , 2011, Sensors.

[31]  I. Ohlsson Book reviewSite-specific management for agricultural systems: P.C. Robert, R.H. Rust and W.E. Larson (Editors). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Madison, WI, 1995. ISBN 0-89118-127-X, Paperback, 993 pp., US$ 39 , 1996 .

[32]  E. Ziegel,et al.  geoENV VII: Geostatistics for Environmental Applications , 1997 .

[33]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[34]  María-Paz Diago,et al.  Grapevine Yield and Leaf Area Estimation Using Supervised Classification Methodology on RGB Images Taken under Field Conditions , 2012, Sensors.

[35]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  D. Mulla Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps , 2013 .

[37]  Massimo Marchi,et al.  Multispectral image analysis for grapevine diseases automatic detection in field conditions , 2012 .

[38]  Reza Ehsani,et al.  Review: A review of advanced techniques for detecting plant diseases , 2010 .

[39]  J. Gaudillère,et al.  Nondestructive measurement of grapevine leaf area by ground normalized difference vegetation index. , 2009 .

[40]  Adam J. Mathews,et al.  Visualizing and Quantifying Vineyard Canopy LAI Using an Unmanned Aerial Vehicle (UAV) Collected High Density Structure from Motion Point Cloud , 2013, Remote. Sens..

[41]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[42]  Aldo Calcante,et al.  Evaluation of "ground sensing" optical sensors for diagnosis of Plasmopara viticola on vines , 2012 .

[43]  A. Calcante,et al.  Integration of optical and analogue sensors for monitoring canopy health and vigour in precision viticulture , 2010, Precision Agriculture.

[44]  Andrew Hall,et al.  Airbone remote sensing of vines for canopy variability and productivity , 2001 .

[45]  F. Baret,et al.  Green area index from an unmanned aerial system over wheat and rapeseed crops , 2014 .

[46]  U. Meier,et al.  Growth stages of mono- and dicotyledonous plants , 1997 .

[47]  Bhaskar J. Choudhury,et al.  Relationships between vegetation indices, radiation absorption, and net photosynthesis evaluated by a sensitivity analysis , 1987 .

[48]  L. Johnson Temporal stability of an NDVI-LAI relationship in a Napa Valley vineyard , 2003 .

[49]  M. S. Moran,et al.  Opportunities and limitations for image-based remote sensing in precision crop management , 1997 .

[50]  J. Bouma,et al.  Future Directions of Precision Agriculture , 2005, Precision Agriculture.

[51]  D. Pascale RGB coordinates of the Macbeth ColorChecker , 2006 .

[52]  Pablo Rodríguez-Gonzálvez,et al.  Vicarious Radiometric Calibration of a Multispectral Camera on Board an Unmanned Aerial System , 2014, Remote. Sens..

[53]  Subana Shanmuganathan,et al.  Applications of image processing in viticulture: a review , 2013 .

[54]  Bruno Tisseyre,et al.  New technologies and methodologies for site-specific viticulture , 2007 .

[55]  A. Gitelson,et al.  Active Sensor Reflectance Measurements of Corn Nitrogen Status and Yield Potential , 2008 .