QUANTUM TRAJECTORIES IN RANDOM ENVIRONMENT: THE STATISTICAL MODEL FOR A HEAT BATH

In this paper, we derive the stochastic master equations corresponding to the statistical model of a heat bath. These stochastic differential equations are obtained as continuous time limits of discrete models of quantum repeated measurements. Physically, they describe the evolution of a small system in contact with a heat bath undergoing continuous measurement. The equations obtained in the present work are qualitatively different from the ones derived in [6], where the Gibbs model of heat bath has been studied. It is shown that the statistical model of a heat bath has a clear physical interpretation in terms of emissions and absorptions of photons. Our approach yields models of random environment and unravelings of stochastic master equations. The equations are rigorously obtained as solutions of martingale problems using the convergence of Markov generators.

[1]  C. Pellegrini Markov chains approximation of jump-diffusion stochastic master equations , 2010 .

[2]  Alberto Barchielli,et al.  Instruments and mutual entropies in quantum information , 2004 .

[3]  Alberto Barchielli,et al.  Quantum Trajectories and Measurements in Continuous Time: The Diffusive Case , 2009 .

[4]  P. Billingsley,et al.  Convergence of Probability Measures , 1969 .

[5]  C. Pellegrini Markov Chains Approximations of jump-Diffusion Quantum Trajectories , 2008, 0803.2593.

[6]  Alberto Barchielli,et al.  Instrumental processes, entropies, information in quantum continual measurements , 2004, Quantum Inf. Comput..

[7]  Matthew R. James,et al.  A Discrete Invitation to Quantum Filtering and Feedback Control , 2009, SIAM Rev..

[8]  Luc Bouten,et al.  Stochastic Schrödinger equations , 2003 .

[9]  Luc Bouten,et al.  Stochastic Schr¨ odinger equations , 2004 .

[10]  C. Pellegrini Existence, uniqueness and approximation for stochastic Schrodinger equation: the Poisson case , 2007, 0709.3713.

[11]  Alberto Barchielli,et al.  Constructing quantum measurement processes via classical stochastic calculus , 1995 .

[12]  C. Mora,et al.  Basic properties of nonlinear stochastic Schrödinger equations driven by Brownian motions , 2008, 0804.0121.

[13]  Paul Malliavin,et al.  Stochastic Analysis , 1997, Nature.

[14]  Alberto Barchielli Direct and heterodyne detection and other applications of quantum stochastic calculus to quantum optics , 1990 .

[15]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[16]  Alberto Barchielli,et al.  Continual Measurements in Quantum Mechanics and Quantum Stochastic Calculus , 2006 .

[17]  F. Zucca,et al.  On a class of stochastic differential equations used in quantum optics , 1996, funct-an/9711002.

[18]  P. Protter,et al.  Weak Limit Theorems for Stochastic Integrals and Stochastic Differential Equations , 1991 .

[19]  P. Protter Stochastic integration and differential equations , 1990 .

[20]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[21]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[22]  V. P. Belavkin,et al.  Quantum stochastic calculus and quantum nonlinear filtering , 1992 .

[23]  Howard Mark Wiseman Quantum trajectories and feedback , 1994 .

[24]  Quantum Stochastic Differential Equations and Dilation of Completely Positive Semigroups , 2006 .

[25]  P. Brémaud Point Processes and Queues , 1981 .

[26]  A. Shiryaev,et al.  Limit Theorems for Stochastic Processes , 1987 .

[27]  J. Doob Stochastic processes , 1953 .

[28]  Yan Pautrat,et al.  From (n+1)-level atom chains to n-dimensional noises , 2005 .

[29]  Y. Pautrat,et al.  From Repeated to Continuous Quantum Interactions , 2003, math-ph/0311002.

[30]  J. Jacod,et al.  Quelques remarques sur un nouveau type d'équations différentielles stochastiques , 1982 .

[31]  Milburn,et al.  Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[32]  Philip Protter,et al.  Wong-Zakai Corrections, Random Evolutions, and Simulation Schemes for SDE's , 1991 .

[33]  A. Paganoni,et al.  On stochastic differential equations and semigroups of probability operators in quantum probability , 1998 .

[34]  C. Gardiner,et al.  Quantum Noise: A Handbook of Markovian and Non-Markovian Quantum Stochastic Methods with Applications to Quantum Optics , 2004 .

[35]  Timothy C. Brown,et al.  Some Poisson Approximations Using Compensators , 1983 .

[36]  Cl'ement Pellegrini,et al.  Existence, uniqueness and approximation of a stochastic Schrödinger equation: The diffusive case , 2007, 0709.1703.

[37]  J. Jacod Calcul stochastique et problèmes de martingales , 1979 .