Fully C/N-Polynitro-Functionalized 2,2'-Biimidazole Derivatives as Nitrogen- and Oxygen-Rich Energetic Salts.

Through the use of a fully C/N-functionalized imidazole-based anion, it was possible to prepare nitrogen- and oxygen-rich energetic salts. When N,N-dinitramino imidazole was paired with nitrogen-rich bases, versatile ionic derivatives were prepared and fully characterized by IR, and 1 H, and 13 C NMR spectroscopy and elemental analysis. Both experimental and theoretical evaluations show promising properties for these energetic compounds, such as high density, positive heats of formation, good oxygen balance, and acceptable stabilities. The energetic salts exhibit promising energetic performance comparable to the benchmark explosive RDX (1,3,5-trinitrotriazacyclohexane).

[1]  P. Yin,et al.  From N-Nitro to N-Nitroamino: Preparation of High-Performance Energetic Materials by Introducing Nitrogen-Containing Ions. , 2015, Angewandte Chemie.

[2]  Suojiang Zhang,et al.  Nitrogen-rich energetic 4-R-5-nitro-1,2,3-triazolate salts (R = –CH3, –NH2, –N3, –NO2 and –NHNO2) as high performance energetic materials , 2015 .

[3]  Chunlin He,et al.  Energetic Materials with Promising Properties: Synthesis and Characterization of 4,4'-Bis(5-nitro-1,2,3-2H-triazole) Derivatives. , 2015, Angewandte Chemie.

[4]  J. Shreeve,et al.  Synthesis, characterization, and energetic properties of 6-amino-tetrazolo[1,5-b]-1,2,4,5-tetrazine-7-N-oxide: a nitrogen-rich material with high density. , 2015, Chemistry, an Asian journal.

[5]  A. Matzger,et al.  Design and Synthesis of a Series of Nitrogen-Rich Energetic Cocrystals of 5,5′-Dinitro-2H,2H′-3,3′-bi-1,2,4-triazole (DNBT) , 2015 .

[6]  A. Matzger,et al.  Energetic-Energetic Cocrystals of Diacetone Diperoxide (DADP): Dramatic and Divergent Sensitivity Modifications via Cocrystallization. , 2015, Journal of the American Chemical Society.

[7]  R. Haiges,et al.  Preparation and characterization of 3,5-dinitro-1H-1,2,4-triazole. , 2015, Dalton transactions.

[8]  P. Yin,et al.  Energetic multifunctionalized nitraminopyrazoles and their ionic derivatives: ternary hydrogen-bond induced high energy density materials. , 2015, Journal of the American Chemical Society.

[9]  Suojiang Zhang,et al.  Heterocyclic Energetic Salts of 4,4′,5,5′-Tetranitro-2,2′-Biimidazole , 2015 .

[10]  R. Haiges,et al.  Synthesis and structural characterization of 3,5-dinitro-1,2,4-triazolates. , 2015, Dalton transactions.

[11]  J. Shreeve,et al.  Energetic salts with π-stacking and hydrogen-bonding interactions lead the way to future energetic materials. , 2015, Journal of the American Chemical Society.

[12]  Zhang Xiaoyu,et al.  Theoretical investigations on 4,4′,5,5′‐tetranitro‐2,2′‐1H,1′H‐2,2′‐biimidazole derivatives as potential nitrogen‐rich high energy materials , 2015 .

[13]  Jun Zhang,et al.  Polynitro-substituted bispyrazoles: a new family of high-performance energetic materials , 2014 .

[14]  J. Shreeve,et al.  Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry. , 2014, Chemical reviews.

[15]  S. Pang,et al.  Nitrogen-rich salts based on polyamino substituted N,N′-azo-1,2,4-triazole: a new family of high-performance energetic materials , 2014 .

[16]  T. Klapötke,et al.  Dikalium‐1,1′‐dinitramino‐5,5′‐bistetrazolat – ein Primärsprengstoff mit schneller Detonation und hoher Initiierungsleistung , 2014 .

[17]  T. Klapötke,et al.  Potassium 1,1'-dinitramino-5,5'-bistetrazolate: a primary explosive with fast detonation and high initiation power. , 2014, Angewandte Chemie.

[18]  R. Haiges,et al.  Nitryl cyanide, NCNO₂. , 2014, Angewandte Chemie.

[19]  P. Yin,et al.  N-diazo-bridged nitroazoles: catenated nitrogen-atom chains compatible with nitro functionalities. , 2014, Chemistry.

[20]  Y. Wang,et al.  3D energetic metal-organic frameworks: synthesis and properties of high energy materials. , 2013, Angewandte Chemie.

[21]  T. Klapötke,et al.  A study of dinitro-bis-1,2,4-triazole-1,1'-diol and derivatives: design of high-performance insensitive energetic materials by the introduction of N-oxides. , 2013, Journal of the American Chemical Society.

[22]  Zhiming Zhou,et al.  High-energy-density materials based on 1-nitramino-2,4-dinitroimidazole , 2013 .

[23]  P. Yin,et al.  N-Trinitroethylamino functionalization of nitroimidazoles: a new strategy for high performance energetic materials , 2013 .

[24]  X. Ju,et al.  Synthesis and characterization of a stable, catenated N11 energetic salt. , 2013, Angewandte Chemie.

[25]  D. Parrish,et al.  Nucleophilic Reactions of The Bis Ammonium Salt of 4,4′,5,5′-Tetranitro-2,2′-biimidazole , 2013, Synlett.

[26]  Chunlin He,et al.  4-Chloro-3,5-dinitropyrazole: a precursor for promising insensitive energetic compounds , 2013 .

[27]  Yanqiang Zhang,et al.  Derivatives of 5-nitro-1,2,3-2H-triazole – high performance energetic materials , 2013 .

[28]  T. Klapötke,et al.  Nitrogen-rich bis-1,2,4-triazoles-a comparative study of structural and energetic properties. , 2012, Chemistry.

[29]  Y. Wang,et al.  Synthesis and promising properties of a new family of high-nitrogen compounds: polyazido- and polyamino-substituted N,N'-azo-1,2,4-triazoles. , 2012, Chemistry.

[30]  T. Klapötke,et al.  1,3-Bis(nitroimido)-1,2,3-triazolate anion, the N-nitroimide moiety, and the strategy of alternating positive and negative charges in the design of energetic materials. , 2012, Journal of the American Chemical Society.

[31]  T. Klapötke,et al.  Energetic Derivatives of 4, 4′,5, 5′‐Tetranitro‐2, 2′‐bisimidazole (TNBI) , 2012 .

[32]  T. Klapötke,et al.  Insensitive Nitrogen-Rich Energetic Compounds Based on the 5,5′-Dinitro-3,3′-bi-1,2,4-triazol-2-ide Anion , 2012 .

[33]  J. Shreeve,et al.  Synthesis and promising properties of a new family of high-density energetic salts of 5-nitro-3-trinitromethyl-1H-1,2,4-triazole and 5,5'-bis(trinitromethyl)-3,3'-azo-1H-1,2,4-triazole. , 2011, Journal of the American Chemical Society.

[34]  J. Shreeve,et al.  Azole-based energetic salts. , 2011, Chemical reviews.

[35]  Y. Nelyubina,et al.  Pseudosymmetry in trinitropyrazole: the cost of error in space-group determination. , 2011, Angewandte Chemie.

[36]  Yanqiang Zhang,et al.  3,4,5-Trinitropyrazole-based energetic salts. , 2010, Chemistry.

[37]  Cai Qi,et al.  1,1'-Azobis-1,2,3-triazole: a high-nitrogen compound with stable N8 structure and photochromism. , 2010, Journal of the American Chemical Society.

[38]  B. Ugrak,et al.  Nitropyrazoles : 18. Synthesis and transformations of 5-amino-3,4-dinitropyrazole (Full Articles) , 2010 .

[39]  C. Roussel,et al.  Selective preparation of 3,4,5-trinitro-1H-pyrazole: a stable all-carbon-nitrated arene. , 2010, Angewandte Chemie.

[40]  M. B. Talawar,et al.  Environmentally compatible next generation green energetic materials (GEMs). , 2009, Journal of hazardous materials.

[41]  T. Klapötke,et al.  Neutral 5-nitrotetrazoles: easy initiation with low pollution , 2009 .

[42]  J. Welch,et al.  Simple, nitrogen-rich, energetic salts of 5-nitrotetrazole. , 2008, Inorganic chemistry.

[43]  B. Twamley,et al.  2,4,5-trinitroimidazole-based energetic salts. , 2007, Chemistry.

[44]  C. Ye,et al.  Rapid and accurate estimation of densities of room-temperature ionic liquids and salts. , 2007, The journal of physical chemistry. A.

[45]  J. M. Shreeve,et al.  Stickstoffreiche energetische Salze und ionische Flüssigkeiten , 2006 .

[46]  R. D. Verma,et al.  Energetic nitrogen-rich salts and ionic liquids. , 2006, Angewandte Chemie.

[47]  S. Cho,et al.  Synthesis and Characterization of 4,4′,5,5′‐Tetranitro‐2,2′‐Bi‐1H‐imidazole (TNBI) , 2005 .

[48]  Ji‐Chang Xiao,et al.  Synthesis of 2,2'-biimidazolium-based ionic liquids: use as a new reaction medium and ligand for palladium-catalyzed suzuki cross-coupling reactions. , 2005, The Journal of organic chemistry.

[49]  M. H. Huynh,et al.  3,6-Di(azido)-1,2,4,5-tetrazine: a precursor for the preparation of carbon nanospheres and nitrogen-rich carbon nitrides. , 2004, Angewandte Chemie.

[50]  R. Butcher,et al.  A new class of flexible energetic salts. Part 7: The structures of the guanidinium and hydroxyguanidinium salts of dinitramide , 2002 .

[51]  L. Glasser,et al.  Lattice potential energy estimation for complex ionic salts from density measurements. , 2002, Inorganic chemistry.

[52]  G. S. Lee,et al.  A review of energetic materials synthesis , 2002 .

[53]  J. Sakakibara,et al.  Oxidation of 7,8-diaminotheophylline with lead tetraacetate and reaction of the oxidation product, 6-cyanoimino-5-diazo-1,3-dimethylpyrimidine-2,4-dione with alcohols or amines , 2001 .

[54]  D. Chavez,et al.  3,3′‐Azobis(6‐amino‐1,2,4,5‐tetrazine): A Novel High‐Nitrogen Energetic Material , 2000 .

[55]  S. Cho,et al.  Theoretical Studies on the Structure of 1,2,4,5‐Tetranitroimidazole , 1999 .

[56]  D. Wales,et al.  Empirical Correlations between Thermodynamic Properties and Intermolecular Forces , 1995 .

[57]  V. Semenov,et al.  Gem-dinitro compounds in organic synthesis. 3. Syntheses of 4-nitro-1,2,3-triazoles from gem-dinitro compounds , 1992 .