Modelling Uncertainty in Preventive Maintenance Scheduling

In this article we consider the practical implementation of Bayesian methodology in determining the optimal preventive maintenance (PM) interval for a complex repairable system. The behaviour of this system is described using a probabilistic model based on the failure intensity pattern. This model includes a number of unknown parameters and a Bayesian approach is established to provide information about the joint posterior distribution of these parameters. This posterior information is then incorporated into previously established PM interval scheduling methodology to determine optimal PM intervals within a decision-theoretic framework.

[1]  Thomas A. Mazzuchi,et al.  A Bayesian perspective on some replacement strategies , 1996 .

[2]  Stephen P. Brooks,et al.  Assessing Convergence of Markov Chain Monte Carlo Algorithms , 2007 .

[3]  Michael J. Phillips Bootstrap confidence regions for the expected ROCOF of a repairable system , 2000, IEEE Trans. Reliab..

[4]  David F. Percy,et al.  Determining economical maintenance intervals , 2000 .

[5]  David F. Percy,et al.  Generalized proportional intensities models for repairable systems , 2006 .

[6]  Khairy A.H. Kobbacy,et al.  Hybrid intensity models for repairable systems , 2010 .

[7]  Jim Albert,et al.  Bayesian Computation with R , 2008 .

[8]  David F. Percy Subjective priors for maintenance models , 2004 .

[9]  Richard J. Cook,et al.  The Statistical Analysis of Recurrent Events , 2007 .

[10]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[11]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[12]  N. Jack,et al.  Age-reduction models for imperfect maintenance , 1998 .

[13]  Fan Zhang,et al.  Optimal maintenance models with minimal repair, periodic overhaul and complete renewal , 1998 .

[14]  David F. Percy,et al.  Scheduling preventive maintenance for oil pumps using generalized proportional intensities models , 2007, Int. Trans. Oper. Res..

[15]  Martin Crowder,et al.  Statistical Analysis of Reliability Data , 1991 .

[16]  Khairy A.H. Kobbacy,et al.  Setting preventive maintenance schedules when data are sparse , 1997 .

[17]  Djamil Aïssani,et al.  Impact of few failure data on the opportunistic replacement policy for multi-component systems , 2010, Reliab. Eng. Syst. Saf..

[18]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[19]  Laurent Doyen,et al.  Classes of imperfect repair models based on reduction of failure intensity or virtual age , 2004, Reliab. Eng. Syst. Saf..

[20]  Gareth O. Roberts,et al.  Convergence assessment techniques for Markov chain Monte Carlo , 1998, Stat. Comput..