Domain decomposition algorithms for mixed methods for second-order elliptic problems

Domain decomposition algorithms for mixed finite element methods for linear second-order elliptic problems in R 2 and R 3 are developed. A convergence theory for two-level and multilevel Schwarz methods applied to the algorithms under consideration is given. It is shown that the condition number of these iterative methods is bounded uniformly from above in the same manner as in the theory of domain decomposition methods for conforming and nonconforming finite element methods for the same differential problems. Numerical experiments are presented to illustrate the present techniques.

[1]  Zhangxin Chen,et al.  On the implementation of mixed methods as nonconforming methods for second-order elliptic problems , 1995 .

[2]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[3]  M. Fortin,et al.  Mixed finite elements for second order elliptic problems in three variables , 1987 .

[4]  J. Wang,et al.  Analysis of the Schwarz algorithm for mixed finite elements methods , 1992 .

[5]  D. Arnold,et al.  Mixed and nonconforming finite element methods : implementation, postprocessing and error estimates , 1985 .

[6]  Barry Smith,et al.  An Optimal Domain Decomposition Preconditioner for the Finite Element Solution of Linear Elasticity Problems , 2017, SIAM J. Sci. Comput..

[7]  J. Mandel Balancing domain decomposition , 1993 .

[8]  Panayot S. Vassilevski,et al.  An application of the abstract multilevel theory to nonconforming finite element methods , 1995 .

[9]  Tarek P. Mathew,et al.  Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems, part I: Algorithms and numerical results , 1993 .

[10]  Susanne C. Brenner,et al.  Two-level additive Schwarz preconditioners for nonconforming finite element methods , 1996, Math. Comput..

[11]  P. Vassilevski,et al.  Multilevel iterative methods for mixed finite element discretizations of elliptic problems , 1992 .

[12]  J. Nédélec A new family of mixed finite elements in ℝ3 , 1986 .

[13]  Tarek P. Mathew,et al.  Schwarz alternating and iterative refinement methods for mixed formulations of elliptic problems, part II: Convergence theory , 1993 .

[14]  M. Fortin,et al.  E cient rectangular mixed fi-nite elements in two and three space variables , 1987 .

[15]  Zhangxin Chen,et al.  BDM mixed methods for a linear elliptic problem , 1994 .

[16]  Lawrence C. Cowsar,et al.  Domain Decomposition Methods for Nonconforming Finite Element Spaces of Lagrange-Type , 1993 .

[17]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[18]  Zhangxin Chen Multigrid algorithms for mixed methods for second order elliptic problems , 1994 .

[19]  Olof B. Widlund,et al.  Domain Decomposition Algorithms with Small Overlap , 1992, SIAM J. Sci. Comput..

[20]  J. Mandel,et al.  Balancing domain decomposition for mixed finite elements , 1995 .

[21]  J. Wang,et al.  Analysis of multilevel decomposition iterative methods for mixed finite element methods , 1994 .

[22]  Zhangxin Chen Analysis of mixed methods using conforming and nonconforming finite element methods , 1993 .

[23]  Junping Wang,et al.  A parallel iterative procedure applicable to the approximate solution of second order partial differential equations by mixed finite element methods , 1993 .

[24]  Marcus Sarkis,et al.  Two-level Schwartz methods for nonconforming finite elements and discontinuous coefficients , 1993 .

[25]  J. Douglas,et al.  Prismatic mixed finite elements for second order elliptic problems , 1989 .

[26]  Jinchao Xu,et al.  Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .

[27]  Mary F. Wheeler,et al.  Parallel Domain Decomposition Method for Mixed Finite Elements for Elliptic Partial Differential Equations , 1990 .

[28]  Fabio Milner,et al.  Mixed finite element methods for quasilinear second-order elliptic problems , 1985 .

[29]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[30]  J. Pasciak,et al.  Convergence estimates for product iterative methods with applications to domain decomposition , 1991 .