Determining approximate shortest paths on weighted polyhedral surfaces

In this article, we present an approximation algorithm for solving the single source shortest paths problem on weighted polyhedral surfaces. We consider a polyhedral surface P as consisting of n triangular faces, where each face has an associated positive weight. The cost of travel through a face is the Euclidean distance traveled, multiplied by the face's weight. For a given parameter ϵ, 0 <ϵ < 1, the cost of the computed paths is at most 1 + ϵ times the cost of corresponding shortest paths. Our algorithm is based on a novel way of discretizing polyhedral surfaces and utilizes a generic greedy approach for computing shortest paths in geometric graphs obtained by such discretization. Its running time is O(C(P)n/&sqrt;ϵ log n/ϵ log 1/ϵ) time, where C(P) captures geometric parameters and the weights of the faces of P.

[1]  Micha Sharir,et al.  Approximating shortest paths on a convex polytope in three dimensions , 1997, JACM.

[2]  Mark Ziegelmann Constrained shortest paths and related problems , 2001 .

[3]  Christos H. Papadimitriou,et al.  An Algorithm for Shortest-Path Motion in Three Dimensions , 1985, Inf. Process. Lett..

[4]  Jörg-Rüdiger Sack,et al.  Approximating weighted shortest paths on polyhedral surfaces , 1997, SCG '97.

[5]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[6]  Yijie Han,et al.  Shortest paths on a polyhedron , 1990, SCG '90.

[7]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[8]  Jörg-Rüdiger Sack,et al.  An Improved Approximation Algorithm for Computing Geometric Shortest Paths , 2003, FCT.

[9]  Pankaj K. Agarwal,et al.  Computing Approximate Shortest Paths on Convex Polytopes , 2000, SCG '00.

[10]  Ève Coste-Manière,et al.  3D+t Modeling of Coronary Artery Tree from Standard Non Simultaneous Angiograms , 2001, MICCAI.

[11]  Zheng Sun,et al.  Adaptive and Compact Discretization for Weighted Region Optimal Path Finding , 2003, FCT.

[12]  Sariel Har-Peled Constructing Approximate Shortest Path Maps in Three Dimensions , 1999, SIAM J. Comput..

[13]  Bernard Chazelle,et al.  Sublinear Geometric Algorithms , 2005, SIAM J. Comput..

[14]  Pankaj K. Agarwal,et al.  Approximating Shortest Paths on a Nonconvex Polyhedron , 2000, SIAM J. Comput..

[15]  Jörg-Rüdiger Sack,et al.  An epsilon-Approximation for Weighted Shortest Paths on Polyhedral Surfaces , 1998, SWAT.

[16]  Jörg-Rüdiger Sack,et al.  Approximation algorithms for geometric shortest path problems , 2000, STOC '00.

[17]  Zheng Sun,et al.  An Efficient Approximation Algorithm for Weighted Region Shortest Path Problem , 2000 .

[18]  William Warntz,et al.  Transportation, Social Physics, And The Law Of Refraction , 1957 .

[19]  Zheng Sun,et al.  BUSHWHACK: An Approximation Algorithm for Minimal Paths through Pseudo-Euclidean Spaces , 2001, ISAAC.

[20]  Joseph S. B. Mitchell,et al.  The weighted region problem: finding shortest paths through a weighted planar subdivision , 1991, JACM.

[21]  Konrad Polthier,et al.  Straightest geodesics on polyhedral surfaces , 2006, SIGGRAPH Courses.

[22]  Micha Sharir,et al.  On Shortest Paths in Polyhedral Spaces , 1986, SIAM J. Comput..

[23]  Hiromasa Suzuki,et al.  Approximate shortest path on a polyhedral surface and its applications , 2001, Comput. Aided Des..

[24]  Subhash Suri,et al.  Practical methods for approximating shortest paths on a convex polytope in R3 , 1995, SODA '95.

[25]  Sanjiv Kapoor,et al.  Efficient computation of geodesic shortest paths , 1999, STOC '99.

[26]  Man-Tak Shing,et al.  A Stochastic Approach to the Weighted-Region Problem: Design and Testing of a Path Annealing Algorit , 1991 .

[27]  David P. Dobkin,et al.  Multiresolution mesh morphing , 1999, SIGGRAPH.

[28]  Sariel Har-Peled,et al.  Approximate shortest paths and geodesic diameters on convex polytopes in three dimensions , 1997, SCG '97.

[29]  John F. Canny,et al.  New lower bound techniques for robot motion planning problems , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[30]  Micha Sharir,et al.  Approximating shortest paths on a convex polytope in three dimensions , 1996, SCG '96.

[31]  Sariel Har-Peled,et al.  Approximate Shortest Paths and Geodesic Diameter on a Convex Polytope in Three Dimensions , 1999, Discret. Comput. Geom..

[32]  Chandrajit L. Bajaj,et al.  The algebraic degree of geometric optimization problems , 1988, Discret. Comput. Geom..