A Survey of Evaluation Methods and Measures for Interpretable Machine Learning

The need for interpretable and accountable intelligent system gets sensible as artificial intelligence plays more role in human life. Explainable artificial intelligence systems can be a solution by self-explaining the reasoning behind the decisions and predictions of the intelligent system. Researchers from different disciplines work together to define, design and evaluate interpretable intelligent systems for the user. Our work supports the different evaluation goals in interpretable machine learning research by a thorough review of evaluation methodologies used in machine-explanation research across the fields of human-computer interaction, visual analytics, and machine learning. We present a 2D categorization of interpretable machine learning evaluation methods and show a mapping between user groups and evaluation measures. Further, we address the essential factors and steps for a right evaluation plan by proposing a nested model for design and evaluation of explainable artificial intelligence systems.

[1]  Koray Kavukcuoglu,et al.  Multiple Object Recognition with Visual Attention , 2014, ICLR.

[2]  Mariusz Bojarski,et al.  VisualBackProp: Efficient Visualization of CNNs for Autonomous Driving , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[3]  Gary Klein,et al.  Metrics for Explainable AI: Challenges and Prospects , 2018, ArXiv.

[4]  Emilee J. Rader,et al.  Explanations as Mechanisms for Supporting Algorithmic Transparency , 2018, CHI.

[5]  Alex Endert,et al.  7 key challenges for visualization in cyber network defense , 2014, VizSEC.

[6]  Cynthia Rudin,et al.  Falling Rule Lists , 2014, AISTATS.

[7]  Eric Horvitz,et al.  Towards Accountable AI: Hybrid Human-Machine Analyses for Characterizing System Failure , 2018, HCOMP.

[8]  Tamara Munzner,et al.  The nested blocks and guidelines model , 2015, Inf. Vis..

[9]  F. Keil,et al.  Explanation and understanding , 2015 .

[10]  Kristina Lerman,et al.  A Survey on Bias and Fairness in Machine Learning , 2019, ACM Comput. Surv..

[11]  Jaedeok Kim,et al.  Human Understandable Explanation Extraction for Black-box Classification Models Based on Matrix Factorization , 2017, ArXiv.

[12]  Laura A. Dabbish,et al.  Working with Machines: The Impact of Algorithmic and Data-Driven Management on Human Workers , 2015, CHI.

[13]  Felix Bießmann,et al.  Quantifying Interpretability and Trust in Machine Learning Systems , 2019, ArXiv.

[14]  Izak Benbasat,et al.  Explanations From Intelligent Systems: Theoretical Foundations and Implications for Practice , 1999, MIS Q..

[15]  Michael Chromik,et al.  Dark Patterns of Explainability, Transparency, and User Control for Intelligent Systems , 2019, IUI Workshops.

[16]  Weng-Keen Wong,et al.  Principles of Explanatory Debugging to Personalize Interactive Machine Learning , 2015, IUI.

[17]  Raquel Flórez López,et al.  Enhancing accuracy and interpretability of ensemble strategies in credit risk assessment. A correlated-adjusted decision forest proposal , 2015, Expert Syst. Appl..

[18]  Arvind Satyanarayan,et al.  The Building Blocks of Interpretability , 2018 .

[19]  Minsuk Kahng,et al.  Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers , 2018, IEEE Transactions on Visualization and Computer Graphics.

[20]  Tim Miller,et al.  Explanation in Artificial Intelligence: Insights from the Social Sciences , 2017, Artif. Intell..

[21]  Deborah L. McGuinness,et al.  Toward establishing trust in adaptive agents , 2008, IUI '08.

[22]  R. Kennedy,et al.  Defense Advanced Research Projects Agency (DARPA). Change 1 , 1996 .

[23]  Jeroen van den Hoven,et al.  Breaking the filter bubble: democracy and design , 2015, Ethics and Information Technology.

[24]  Karrie Karahalios,et al.  "Be Careful; Things Can Be Worse than They Appear": Understanding Biased Algorithms and Users' Behavior Around Them in Rating Platforms , 2017, ICWSM.

[25]  Jeffrey M. Bradshaw,et al.  Myths of Automation, Part 2: Some Very Human Consequences , 2014, IEEE Intelligent Systems.

[26]  Deborah Lee,et al.  I Trust It, but I Don’t Know Why , 2013, Hum. Factors.

[27]  Roderick M. Kramer,et al.  Swift trust and temporary groups. , 1996 .

[28]  Li Chen,et al.  Trust building with explanation interfaces , 2006, IUI '06.

[29]  Anind K. Dey,et al.  Why and why not explanations improve the intelligibility of context-aware intelligent systems , 2009, CHI.

[30]  Nicholas Diakopoulos Enabling Accountability of Algorithmic Media: Transparency as a Constructive and Critical Lens , 2017 .

[31]  Mouzhi Ge,et al.  How should I explain? A comparison of different explanation types for recommender systems , 2014, Int. J. Hum. Comput. Stud..

[32]  Andrea Bunt,et al.  Are explanations always important?: a study of deployed, low-cost intelligent interactive systems , 2012, IUI '12.

[33]  Zhangyang Wang,et al.  Predicting Model Failure using Saliency Maps in Autonomous Driving Systems , 2019, ArXiv.

[34]  Jun Zhu,et al.  Analyzing the Training Processes of Deep Generative Models , 2018, IEEE Transactions on Visualization and Computer Graphics.

[35]  Anind K. Dey,et al.  Support for context-aware intelligibility and control , 2009, CHI.

[36]  Mark R. Lehto,et al.  Foundations for an Empirically Determined Scale of Trust in Automated Systems , 2000 .

[37]  Daniel A. Keim,et al.  The Role of Uncertainty, Awareness, and Trust in Visual Analytics , 2016, IEEE Transactions on Visualization and Computer Graphics.

[38]  S. Gregor,et al.  Measuring Human-Computer Trust , 2000 .

[39]  Maya Cakmak,et al.  Power to the People: The Role of Humans in Interactive Machine Learning , 2014, AI Mag..

[40]  Frank E. Ritter,et al.  Designs for explaining intelligent agents , 2009, Int. J. Hum. Comput. Stud..

[41]  Leanne M. Hirshfield,et al.  The Construct of State-Level Suspicion , 2013, Hum. Factors.

[42]  Stephen Muggleton,et al.  How Does Predicate Invention Affect Human Comprehensibility? , 2016, ILP.

[43]  Heinrich Hußmann,et al.  I Drive - You Trust: Explaining Driving Behavior Of Autonomous Cars , 2019, CHI Extended Abstracts.

[44]  Weng-Keen Wong,et al.  Towards recognizing "cool": can end users help computer vision recognize subjective attributes of objects in images? , 2012, IUI '12.

[45]  Cynthia Rudin,et al.  Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model , 2015, ArXiv.

[46]  Gary Klein,et al.  Improving Users' Mental Models of Intelligent Software Tools , 2011, IEEE Intelligent Systems.

[47]  Catherine Plaisant,et al.  The challenge of information visualization evaluation , 2004, AVI.

[48]  W. Keith Edwards,et al.  Intelligibility and Accountability: Human Considerations in Context-Aware Systems , 2001, Hum. Comput. Interact..

[49]  Adrian Weller,et al.  Transparency: Motivations and Challenges , 2019, Explainable AI.

[50]  Stephanie Rosenthal,et al.  Verbalization: Narration of Autonomous Robot Experience , 2016, IJCAI.

[51]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[52]  Quentin Pleple,et al.  Interactive Topic Modeling , 2013 .

[53]  Duen Horng Chau,et al.  Summit: Scaling Deep Learning Interpretability by Visualizing Activation and Attribution Summarizations , 2019, IEEE Transactions on Visualization and Computer Graphics.

[54]  Bernease Herman,et al.  The Promise and Peril of Human Evaluation for Model Interpretability , 2017, ArXiv.

[55]  Dympna O'Sullivan,et al.  The Role of Explanations on Trust and Reliance in Clinical Decision Support Systems , 2015, 2015 International Conference on Healthcare Informatics.

[56]  Sarvapali D. Ramchurn,et al.  Doing the laundry with agents: a field trial of a future smart energy system in the home , 2014, CHI.

[57]  Kenney Ng,et al.  Interacting with Predictions: Visual Inspection of Black-box Machine Learning Models , 2016, CHI.

[58]  Huan Liu,et al.  eTrust: understanding trust evolution in an online world , 2012, KDD.

[59]  Shagun Jhaver,et al.  Algorithmic Anxiety and Coping Strategies of Airbnb Hosts , 2018, CHI.

[60]  William J. Clancey,et al.  Explaining Explanation, Part 4: A Deep Dive on Deep Nets , 2018, IEEE Intelligent Systems.

[61]  Andrea Vedaldi,et al.  Interpretable Explanations of Black Boxes by Meaningful Perturbation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[62]  Melanie Tory,et al.  Human factors in visualization research , 2004, IEEE Transactions on Visualization and Computer Graphics.

[63]  David S. Ebert,et al.  FinVis: Applied visual analytics for personal financial planning , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[64]  Daniel A. Keim,et al.  Human-centered machine learning through interactive visualization , 2016 .

[65]  Aniket Kittur,et al.  Crowdsourcing user studies with Mechanical Turk , 2008, CHI.

[66]  Thomas G. Dietterich,et al.  Interacting meaningfully with machine learning systems: Three experiments , 2009, Int. J. Hum. Comput. Stud..

[67]  Andrew Zisserman,et al.  Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , 2013, ICLR.

[68]  E. Langer,et al.  The Mindlessness of Ostensibly Thoughtful Action: The Role of "Placebic" Information in Interpersonal Interaction , 1978 .

[69]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[70]  Weng-Keen Wong,et al.  Too much, too little, or just right? Ways explanations impact end users' mental models , 2013, 2013 IEEE Symposium on Visual Languages and Human Centric Computing.

[71]  Oluwasanmi Koyejo,et al.  Examples are not enough, learn to criticize! Criticism for Interpretability , 2016, NIPS.

[72]  Scott Lundberg,et al.  A Unified Approach to Interpreting Model Predictions , 2017, NIPS.

[73]  Jichen Zhu,et al.  Explainable AI for Designers: A Human-Centered Perspective on Mixed-Initiative Co-Creation , 2018, 2018 IEEE Conference on Computational Intelligence and Games (CIG).

[74]  Karrie Karahalios,et al.  Auditing Algorithms : Research Methods for Detecting Discrimination on Internet Platforms , 2014 .

[75]  Min Kyung Lee,et al.  Procedural Justice in Algorithmic Fairness , 2019, Proc. ACM Hum. Comput. Interact..

[76]  Mike Wu,et al.  Beyond Sparsity: Tree Regularization of Deep Models for Interpretability , 2017, AAAI.

[77]  Alex Pentland,et al.  Fair, Transparent, and Accountable Algorithmic Decision-making Processes , 2017, Philosophy & Technology.

[78]  Todd Kulesza,et al.  Tell me more?: the effects of mental model soundness on personalizing an intelligent agent , 2012, CHI.

[79]  Shie Mannor,et al.  Graying the black box: Understanding DQNs , 2016, ICML.

[80]  Alexander Binder,et al.  Evaluating the Visualization of What a Deep Neural Network Has Learned , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[81]  Been Kim,et al.  Sanity Checks for Saliency Maps , 2018, NeurIPS.

[82]  Judith Masthoff,et al.  Designing and Evaluating Explanations for Recommender Systems , 2011, Recommender Systems Handbook.

[83]  Karin Coninx,et al.  PervasiveCrystal: Asking and Answering Why and Why Not Questions about Pervasive Computing Applications , 2010, 2010 Sixth International Conference on Intelligent Environments.

[84]  Elmar Eisemann,et al.  DeepEyes: Progressive Visual Analytics for Designing Deep Neural Networks , 2018, IEEE Transactions on Visualization and Computer Graphics.

[85]  Marko Bohanec,et al.  Perturbation-Based Explanations of Prediction Models , 2018, Human and Machine Learning.

[86]  Heinrich Hußmann,et al.  The Impact of Placebic Explanations on Trust in Intelligent Systems , 2019, CHI Extended Abstracts.

[87]  Bernt Schiele,et al.  Towards improving trust in context-aware systems by displaying system confidence , 2005, Mobile HCI.

[88]  Latanya Sweeney,et al.  Discrimination in online ad delivery , 2013, CACM.

[89]  John Riedl,et al.  Explaining collaborative filtering recommendations , 2000, CSCW '00.

[90]  Duane Szafron,et al.  Visual Explanation of Evidence with Additive Classifiers , 2006, AAAI.

[91]  Johannes Gehrke,et al.  Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission , 2015, KDD.

[92]  Quanshi Zhang,et al.  Visual interpretability for deep learning: a survey , 2018, Frontiers of Information Technology & Electronic Engineering.

[93]  Bonnie M. Muir,et al.  Trust Between Humans and Machines, and the Design of Decision Aids , 1987, Int. J. Man Mach. Stud..

[94]  Hinrich Schütze,et al.  Evaluating neural network explanation methods using hybrid documents and morphological agreement , 2018 .

[95]  Eric D. Ragan,et al.  The Effects of Meaningful and Meaningless Explanations on Trust and Perceived System Accuracy in Intelligent Systems , 2019, HCOMP.

[96]  Simone Stumpf,et al.  User Trust in Intelligent Systems: A Journey Over Time , 2016, IUI.

[97]  Rebecca Gray,et al.  Understanding User Beliefs About Algorithmic Curation in the Facebook News Feed , 2015, CHI.

[98]  Mohan S. Kankanhalli,et al.  Trends and Trajectories for Explainable, Accountable and Intelligible Systems: An HCI Research Agenda , 2018, CHI.

[99]  Brent Mittelstadt,et al.  Automation, Algorithms, and Politics| Auditing for Transparency in Content Personalization Systems , 2016 .

[100]  Bistra N. Dilkina,et al.  A Deep Learning Approach for Population Estimation from Satellite Imagery , 2017, GeoHumanities@SIGSPATIAL.

[101]  Zachary Chase Lipton The mythos of model interpretability , 2016, ACM Queue.

[102]  Jaegul Choo,et al.  Visual Analytics for Explainable Deep Learning , 2018, IEEE Computer Graphics and Applications.

[103]  James Zou,et al.  Towards Automatic Concept-based Explanations , 2019, NeurIPS.

[104]  Colin M. Gray,et al.  The Dark (Patterns) Side of UX Design , 2018, CHI.

[105]  Raymond J. Mooney,et al.  Explaining Recommendations: Satisfaction vs. Promotion , 2005 .

[106]  Robert A. Bridges,et al.  Situ: Identifying and Explaining Suspicious Behavior in Networks , 2019, IEEE Transactions on Visualization and Computer Graphics.

[107]  Jaegul Choo,et al.  iVisClassifier: An interactive visual analytics system for classification based on supervised dimension reduction , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[108]  Alexandra Chouldechova,et al.  Fair prediction with disparate impact: A study of bias in recidivism prediction instruments , 2016, Big Data.

[109]  M. Sheelagh T. Carpendale,et al.  Evaluating Information Visualizations , 2008, Information Visualization.

[110]  Adrian Weller,et al.  Challenges for Transparency , 2017, ArXiv.

[111]  Yindalon Aphinyanagphongs,et al.  A Workflow for Visual Diagnostics of Binary Classifiers using Instance-Level Explanations , 2017, 2017 IEEE Conference on Visual Analytics Science and Technology (VAST).

[112]  Zhen Li,et al.  Understanding Hidden Memories of Recurrent Neural Networks , 2017, 2017 IEEE Conference on Visual Analytics Science and Technology (VAST).

[113]  Max Welling,et al.  Visualizing Deep Neural Network Decisions: Prediction Difference Analysis , 2017, ICLR.

[114]  Eric W. Weisstein,et al.  Closed-Form Solution , 2002 .

[115]  Jian Pei,et al.  Exact and Consistent Interpretation for Piecewise Linear Neural Networks: A Closed Form Solution , 2018, KDD.

[116]  Tal Z. Zarsky,et al.  The Trouble with Algorithmic Decisions , 2016 .

[117]  Seth Flaxman,et al.  European Union Regulations on Algorithmic Decision-Making and a "Right to Explanation" , 2016, AI Mag..

[118]  Zhen Li,et al.  Towards Better Analysis of Deep Convolutional Neural Networks , 2016, IEEE Transactions on Visualization and Computer Graphics.

[119]  Dumitru Erhan,et al.  The (Un)reliability of saliency methods , 2017, Explainable AI.

[120]  T. Lombrozo The structure and function of explanations , 2006, Trends in Cognitive Sciences.

[121]  Hod Lipson,et al.  Understanding Neural Networks Through Deep Visualization , 2015, ArXiv.

[122]  Madeleine Udell,et al.  Fairness Under Unawareness: Assessing Disparity When Protected Class Is Unobserved , 2018, FAT.

[123]  Tamara Munzner,et al.  A Nested Model for Visualization Design and Validation , 2009, IEEE Transactions on Visualization and Computer Graphics.

[124]  Samuel J. Gershman,et al.  Human Evaluation of Models Built for Interpretability , 2019, HCOMP.

[125]  Per Ola Kristensson,et al.  A Review of User Interface Design for Interactive Machine Learning , 2018, ACM Trans. Interact. Intell. Syst..

[126]  Emily Chen,et al.  How do Humans Understand Explanations from Machine Learning Systems? An Evaluation of the Human-Interpretability of Explanation , 2018, ArXiv.

[127]  Trevor Darrell,et al.  Women also Snowboard: Overcoming Bias in Captioning Models , 2018, ECCV.

[128]  Kristina Höök,et al.  Steps to take before intelligent user interfaces become real , 2000, Interact. Comput..

[129]  Samuel C. Woolley,et al.  Automating power: Social bot interference in global politics , 2016, First Monday.

[130]  Dhruv Batra,et al.  Human Attention in Visual Question Answering: Do Humans and Deep Networks look at the same regions? , 2016, EMNLP.

[131]  Andrew Slavin Ross,et al.  Improving the Adversarial Robustness and Interpretability of Deep Neural Networks by Regularizing their Input Gradients , 2017, AAAI.

[132]  Jouni Markkula,et al.  EU General Data Protection Regulation: Changes and implications for personal data collecting companies , 2017, Comput. Law Secur. Rev..

[133]  Melanie Tory,et al.  Evaluating Visualizations: Do Expert Reviews Work? , 2005, IEEE Computer Graphics and Applications.

[134]  Qian Yang,et al.  Designing Theory-Driven User-Centric Explainable AI , 2019, CHI.

[135]  Baining Guo,et al.  TopicPanorama: A Full Picture of Relevant Topics , 2014, IEEE Transactions on Visualization and Computer Graphics.

[136]  Eric Horvitz,et al.  Beyond Accuracy: The Role of Mental Models in Human-AI Team Performance , 2019, HCOMP.

[137]  Francesca Toni,et al.  Human-grounded Evaluations of Explanation Methods for Text Classification , 2019, EMNLP.

[138]  Been Kim,et al.  Towards A Rigorous Science of Interpretable Machine Learning , 2017, 1702.08608.

[139]  Tony Doyle,et al.  Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy , 2017, Inf. Soc..

[140]  Yanjun Qi,et al.  Adversarial-Playground: A visualization suite showing how adversarial examples fool deep learning , 2017, 2017 IEEE Symposium on Visualization for Cyber Security (VizSec).

[141]  David Weinberger,et al.  Accountability of AI Under the Law: The Role of Explanation , 2017, ArXiv.

[142]  Alex Groce,et al.  You Are the Only Possible Oracle: Effective Test Selection for End Users of Interactive Machine Learning Systems , 2014, IEEE Transactions on Software Engineering.

[143]  Carlos Guestrin,et al.  Anchors: High-Precision Model-Agnostic Explanations , 2018, AAAI.

[144]  Martin Wattenberg,et al.  Direct-Manipulation Visualization of Deep Networks , 2017, ArXiv.

[145]  Jure Leskovec,et al.  Interpretable Decision Sets: A Joint Framework for Description and Prediction , 2016, KDD.

[146]  Stefan N. Groesser,et al.  A comprehensive method for comparing mental models of dynamic systems , 2011, Eur. J. Oper. Res..

[147]  Lalana Kagal,et al.  Explaining Explanations: An Overview of Interpretability of Machine Learning , 2018, 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA).

[148]  Wojciech Samek,et al.  Methods for interpreting and understanding deep neural networks , 2017, Digit. Signal Process..

[149]  Andrew Slavin Ross,et al.  Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations , 2017, IJCAI.

[150]  Paul N. Bennett,et al.  Guidelines for Human-AI Interaction , 2019, CHI.

[151]  Wolfgang Minker,et al.  Probabilistic Human-Computer Trust Handling , 2014, SIGDIAL Conference.

[152]  Sean A. Munson,et al.  When (ish) is My Bus?: User-centered Visualizations of Uncertainty in Everyday, Mobile Predictive Systems , 2016, CHI.

[153]  Francisco Herrera,et al.  Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI , 2020, Inf. Fusion.

[154]  Weng-Keen Wong,et al.  Explanatory Debugging: Supporting End-User Debugging of Machine-Learned Programs , 2010, VL/HCC.

[155]  Jo Vermeulen,et al.  From today's augmented houses to tomorrow's smart homes: new directions for home automation research , 2014, UbiComp.

[156]  Brad A. Myers,et al.  Answering why and why not questions in user interfaces , 2006, CHI.

[157]  Margaret M. Burnett,et al.  Toward Foraging for Understanding of StarCraft Agents: An Empirical Study , 2017, IUI.

[158]  Quanshi Zhang,et al.  Examining CNN representations with respect to Dataset Bias , 2017, AAAI.

[159]  Matteo Turilli,et al.  The ethics of information transparency , 2009, Ethics and Information Technology.

[160]  Zijian Zhang,et al.  Dissonance Between Human and Machine Understanding , 2019, Proc. ACM Hum. Comput. Interact..

[161]  Alexander Binder,et al.  On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation , 2015, PloS one.

[162]  Alex Endert,et al.  Evaluating Interactive Graphical Encodings for Data Visualization , 2018, IEEE Transactions on Visualization and Computer Graphics.

[163]  Margaret M. Burnett,et al.  What Should Be in an XAI Explanation? What IFT Reveals , 2018, IUI Workshops.

[164]  Martin Wattenberg,et al.  Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) , 2017, ICML.

[165]  Franco Turini,et al.  A Survey of Methods for Explaining Black Box Models , 2018, ACM Comput. Surv..

[166]  Anind K. Dey,et al.  Assessing demand for intelligibility in context-aware applications , 2009, UbiComp.

[167]  Jeffrey M. Bradshaw,et al.  Trust in Automation , 2013, IEEE Intelligent Systems.

[168]  Mark Bilandzic,et al.  Bringing Transparency Design into Practice , 2018, IUI.

[169]  Qian Yang,et al.  Why these Explanations? Selecting Intelligibility Types for Explanation Goals , 2019, IUI Workshops.

[170]  James J. Thomas,et al.  Visualizing the non-visual: spatial analysis and interaction with information from text documents , 1995, Proceedings of Visualization 1995 Conference.

[171]  Eric D. Ragan,et al.  A Human-Grounded Evaluation Benchmark for Local Explanations of Machine Learning , 2018, ArXiv.

[172]  Michael Carl Tschantz,et al.  Automated Experiments on Ad Privacy Settings , 2014, Proc. Priv. Enhancing Technol..

[173]  Dieter Schmalstieg,et al.  StratomeX: Visual Analysis of Large‐Scale Heterogeneous Genomics Data for Cancer Subtype Characterization , 2012, Comput. Graph. Forum.

[174]  Balachander Krishnamurthy,et al.  Measuring personalization of web search , 2013, WWW.

[175]  Gary Klein,et al.  Explaining Explanation, Part 2: Empirical Foundations , 2017, IEEE Intelligent Systems.

[176]  Steven M. Drucker,et al.  TeleGam: Combining Visualization and Verbalization for Interpretable Machine Learning , 2019, 2019 IEEE Visualization Conference (VIS).

[177]  Philip N. Howard,et al.  Bots, #StrongerIn, and #Brexit: Computational Propaganda during the UK-EU Referendum , 2016, ArXiv.

[178]  Eric D. Ragan,et al.  Open Issues in Combating Fake News: Interpretability as an Opportunity , 2019, ArXiv.

[179]  Alexander M. Rush,et al.  LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks , 2016, IEEE Transactions on Visualization and Computer Graphics.

[180]  Béatrice Cahour,et al.  Does projection into use improve trust and exploration? An example with a cruise control system , 2009 .

[181]  K. Mueller,et al.  Evolutionary Visual Analysis of Deep Neural Networks , 2017 .

[182]  Simone Stumpf,et al.  Explaining Smart Heating Systems to Discourage Fiddling with Optimized Behavior , 2018, IUI Workshops.

[183]  Gautham J. Mysore,et al.  An Efficient Posterior Regularized Latent Variable Model for Interactive Sound Source Separation , 2013, ICML.

[184]  Gary Klein,et al.  Explaining Explanation, Part 3: The Causal Landscape , 2018, IEEE Intelligent Systems.

[185]  Lei Shi,et al.  A user-based taxonomy for deep learning visualization , 2018, Vis. Informatics.

[186]  Qinying Liao,et al.  An Uncertainty-Aware Approach for Exploratory Microblog Retrieval , 2015, IEEE Transactions on Visualization and Computer Graphics.

[187]  Dan Conway,et al.  How to Recommend?: User Trust Factors in Movie Recommender Systems , 2017, IUI.

[188]  Alex Endert,et al.  The State of the Art in Integrating Machine Learning into Visual Analytics , 2017, Comput. Graph. Forum.

[189]  Jun Zhao,et al.  'It's Reducing a Human Being to a Percentage': Perceptions of Justice in Algorithmic Decisions , 2018, CHI.

[190]  Avanti Shrikumar,et al.  Learning Important Features Through Propagating Activation Differences , 2017, ICML.

[191]  Mike Ananny,et al.  Seeing without knowing: Limitations of the transparency ideal and its application to algorithmic accountability , 2018, New Media Soc..