Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP)

The Ocean Model Intercomparison Project (OMIP) focuses on the physics and biogeochemistry of the ocean component of Earth system models participating in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). OMIP aims to provide standard protocols and diagnostics for ocean models, while offering a forum to promote their common assessment and improvement. It also offers to compare solutions of the same ocean models when forced with reanalysis data (OMIP simulations) vs. when integrated within fully coupled Earth system models (CMIP6). Here we detail simulation protocols and diagnostics for OMIP's biogeochemical and inert chemical tracers. These passive-tracer simulations will be coupled to ocean circulation models, initialized with observational data or output from a model spin-up, and forced by repeating the 1948–2009 surface fluxes of heat, fresh water, and momentum. These so-called OMIP-BGC simulations include three inert chemical tracers (CFC-11, CFC-12, SF6) and biogeochemical tracers (e.g., dissolved inorganic carbon, carbon isotopes, alkalinity, nutrients, and oxygen). Modelers will use their preferred prognostic BGC model but should follow common guidelines for gas exchange and carbonate chemistry. Simulations include both natural and total carbon tracers. The required forced simulation (omip1) will be initialized with gridded observational climatologies. An optional forced simulation (omip1-spunup) will be initialized instead with BGC fields from a long model spin-up, preferably for 2000 years or more, and forced by repeating the same 62-year meteorological forcing. That optional run will also include abiotic tracers of total dissolved inorganic carbon and radiocarbon, CTabio and 14CTabio, to assess deep-ocean ventilation and distinguish the role of physics vs. biology. These simulations will be forced by observed atmospheric histories of the three inert gases and CO2 as well as carbon isotope ratios of CO2. OMIP-BGC simulation protocols are founded on those from previous phases of the Ocean Carbon-Cycle Model Intercomparison Project. They have been merged and updated to reflect improvements concerning gas exchange, carbonate chemistry, and new data for initial conditions and atmospheric gas histories. Code is provided to facilitate their implementation.

[1]  R. Weiss,et al.  Nitrous oxide solubility in water and seawater , 1980 .

[2]  F. F. Pérèz,et al.  Association constant of fluoride and hydrogen ions in seawater , 1987 .

[3]  E. Maier‐Reimer,et al.  Sea‐air CO2 fluxes and carbon transport: A comparison of three ocean general circulation models , 2000 .

[4]  R. Najjar,et al.  Design of OCMIP-2 simulations of chlorofluorocarbons , the solubility pump and common biogeochemistry , 1998 .

[5]  Stephen G. Yeager,et al.  The global climatology of an interannually varying air–sea flux data set , 2009 .

[6]  L. Bopp,et al.  Towards understanding global variability in ocean carbon‐13 , 2008 .

[7]  F. A. Richards,et al.  The influence of organisms on the composition of sea-water , 1963 .

[8]  K. Taylor,et al.  Experimental and diagnostic protocol for the physical component of the CMIP6 Ocean Model Intercomparison Project (OMIP) , 2016 .

[9]  R. Weiss Carbon dioxide in water and seawater: the solubility of a non-ideal gas , 1974 .

[10]  R. Weiss,et al.  Re-evaluation of the lifetimes of the major CFCs and CH 3 CCl 3 using atmospheric trends , 2012 .

[11]  The Ocean Bomb Radiocarbon Inventory Revisited , 2013 .

[12]  W. Broecker,et al.  Lamont Radiocarbon Measurements VIII , 1961, Radiocarbon.

[13]  Christoph Heinze,et al.  Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models , 2013 .

[14]  Timothy P. Boyer,et al.  World ocean atlas 2013. Volume 4, Dissolved inorganic nutrients (phosphate, nitrate, silicate) , 2013 .

[15]  D. Etheridge,et al.  A revised 1000 year atmospheric δ13C‐CO2 record from Law Dome and South Pole, Antarctica , 2013 .

[16]  Pierre Friedlingstein,et al.  C4MIP – The Coupled Climate–Carbon Cycle Model Intercomparison Project: Experimental protocol for CMIP6 , 2016 .

[17]  W. Broecker,et al.  Gas exchange rates between air and sea , 1974 .

[18]  G. Munhoven Mathematics of the total alkalinity-pH equation - pathway to robust and universal solution algorithms: the SolveSAPHE package v1.0.1 , 2013 .

[19]  Corinne Le Quéré,et al.  iMarNet : an ocean biogeochemistry model intercomparison project within a common physical ocean modelling framework , 2014 .

[20]  D. Wilbur,et al.  CARBON ISOTOPE FRACTIONATION DURING GAS-WATER EXCHANGE AND DISSOLUTION OF CO2 , 1995 .

[21]  Martin Jung,et al.  The C4MIP experimental protocol for CMIP6 , 2016 .

[22]  J. L. Bullister,et al.  The solubility of sulfur hexafluoride in water and seawater , 2002 .

[23]  W. Mook 13C in atmospheric CO2 , 1986 .

[24]  Patrick Heimbach,et al.  OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project , 2016 .

[25]  A. Mix,et al.  Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ 13 C) in the ocean , 2013 .

[26]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[27]  Olivier Aumont,et al.  Exploring the capacity of the ocean to retain artificially sequestered CO2 , 1999 .

[28]  P. Kållberg,et al.  ABSOLUTE DETERMINATION OF THE ACTIVITY OF TWO C-14 DATING STANDARDS , 1965 .

[29]  P. Quay,et al.  Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake , 2003 .

[30]  N. Meinshausen,et al.  Historical greenhouse gas concentrations , 2016 .

[31]  R. Weiss,et al.  Solubilities of chlorofluorocarbons 11 and 12 in water and seawater , 1985 .

[32]  J. Gattuso,et al.  Comparison of ten packages that compute ocean carbonate chemistry , 2014 .

[33]  L. Bopp,et al.  Globalizing results from ocean in situ iron fertilization studies , 2006 .

[34]  S. Khatiwala,et al.  Reconstruction of the history of anthropogenic CO2 concentrations in the ocean , 2009, Nature.

[35]  Keith W. Dixon,et al.  Simulations of radiocarbon in a coarse-resolution world ocean model: 1. Steady state prebomb distributions , 1989 .

[36]  C. Marchetti On geoengineering and the CO2 problem , 1977 .

[37]  Rik Wanninkhof,et al.  Relationship between wind speed and gas exchange over the ocean revisited , 2014 .

[38]  T. Naegler Reconciliation of excess 14C-constrained global CO2 piston velocity estimates , 2009 .

[39]  B. Kromer,et al.  Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2 , 2010 .

[40]  Richard A. Feely,et al.  A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) , 2004 .

[41]  A. Dickson The carbon dioxide system in seawater : equilibrium chemistry and measurements 1 , 2011 .

[42]  E. Maier‐Reimer,et al.  Ocean-circulation model of the carbon cycle , 1990 .

[43]  K. Lindsay,et al.  Carbon isotopes in the ocean model of the Community Earth System Model (CESM1) , 2014 .

[44]  G. Henderson,et al.  A synthesis of marine sediment core δ 13 C data over the last 150 000 years , 2009 .

[45]  Dieter Wolf-Gladrow,et al.  Total alkalinity: The explicit conservative expression and its application to biogeochemical processes , 2007 .

[46]  Scott C. Doney,et al.  Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: Results from Phase II of the Ocean Carbon‐cycle Model Intercomparison Project (OCMIP‐2) , 2007 .

[47]  B. Tilbrook,et al.  Oceanic Uptake of Fossil Fuel CO2: Carbon-13 Evidence , 1992, Science.

[48]  Thomas F. Stocker,et al.  Carbon Isotope Constraints on the Deglacial CO2 Rise from Ice Cores , 2012, Science.

[49]  Jean-Marc Molines,et al.  Eddy compensation and controls of the enhanced sea‐to‐air CO2 flux during positive phases of the Southern Annular Mode , 2013 .

[50]  E. Maier‐Reimer,et al.  Estimates of anthropogenic carbon uptake from four three‐dimensional global ocean models , 2001 .

[51]  Samar Khatiwala,et al.  Fast spin up of Ocean biogeochemical models using matrix-free Newton–Krylov , 2008 .

[52]  Andreas Oschlies,et al.  A model-based assessment of the TrOCA approach for estimating anthropogenic carbon in the ocean , 2010 .

[53]  C. Sweeney,et al.  Constraining global air‐sea gas exchange for CO2 with recent bomb 14C measurements , 2007 .

[54]  G. Madec,et al.  A degradation approach to accelerate simulations to steady-state in a 3-D tracer transport model of the global ocean , 1998 .

[55]  Martin Wahlen,et al.  Exchanges of Atmospheric CO2 and 13CO2 with the Terrestrial Biosphere and Oceans from 1978 to 2000. I. Global Aspects , 2001 .

[56]  J. Sarmiento,et al.  Oceanic ventilation and biogeochemical cycling: Understanding the physical mechanisms that produce realistic distributions of tracers and productivity , 2004 .

[57]  E. Maier‐Reimer,et al.  Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms , 2005, Nature.

[58]  N. Gruber,et al.  Changing controls on oceanic radiocarbon: New insights on shallow‐to‐deep ocean exchange and anthropogenic CO2 uptake , 2012 .

[59]  Timothy M. Merlis,et al.  Fast Dynamical Spin up of Ocean General Circulation Models , 2006 .

[60]  K. Bryan Accelerating the Convergence to Equilibrium of Ocean-Climate Models , 1984 .

[61]  F. F. Pérèz,et al.  An internally consistent data product for the world ocean: the Global Ocean Data Analysis Project, version 2 (GLODAPv2) , 2016 .

[62]  K. Lindsay,et al.  Partitioning uncertainty in ocean carbon uptake projections: Internal variability, emission scenario, and model structure , 2016 .

[63]  Masao Ishii,et al.  The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean , 2016 .

[64]  Christoph Heinze,et al.  Inconsistent strategies to spin up models in CMIP5: implications for ocean biogeochemical model performance assessment , 2015 .

[65]  Ulf Riebesell,et al.  Guide to best practices for ocean acidification research and data reporting , 2011 .

[66]  Scott C. Doney,et al.  Evaluation of ocean carbon cycle models with data‐based metrics , 2004 .

[67]  D. Schrag,et al.  Radiocarbon as a thermocline proxy for the eastern equatorial Pacific , 2004 .

[68]  F. Millero Carbonate constants for estuarine waters , 2010 .

[69]  Gurvan Madec,et al.  Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models , 2000 .

[70]  Christoph Heinze,et al.  How much deep water is formed in the Southern Ocean , 1998 .

[71]  R. Wanninkhof Relationship between wind speed and gas exchange over the ocean , 1992 .

[72]  Dennis A. Hansell,et al.  Dissolved Organic Matter in the Ocean: A Controversy Stimulates New Insights , 2009 .

[73]  E. Maier‐Reimer,et al.  Evaluation of OCMIP-2 ocean models' deep circulation with mantle helium-3 , 2004 .

[74]  A. H. Wapstra,et al.  The Nubase evaluation of nuclear and decay properties , 2003 .

[75]  Synte Peacock Debate over the ocean bomb radiocarbon sink: Closing the gap , 2004 .

[76]  Andrew G. Dickson,et al.  The estimation of acid dissociation constants in seawater media from potentionmetric titrations with strong base. I. The ionic product of water — Kw , 1979 .

[77]  Scott C. Doney,et al.  Evaluating global ocean carbon models: The importance of realistic physics , 2004 .

[78]  M. Morlighem,et al.  A fast Newton-Krylov solver for seasonally varying global ocean biogeochemistry models , 2014 .

[79]  H. Craig Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide , 1957 .

[80]  F. Johnson Half-Life of Radiocarbon. , 1965, Science.

[81]  V. L. Orkin,et al.  Scientific Assessment of Ozone Depletion: 2010 , 2003 .

[82]  J. Toggweiler,et al.  Simulations of radiocarbon in a coarse-resolution world ocean model: 2. Distributions of bomb-produced carbon 14 , 1989 .

[83]  K. Rodgers,et al.  Interannual-to-decadal variability of North Atlantic air-sea CO 2 fluxes , 2005 .

[84]  Thierry Penduff,et al.  Sea Level Expression of Intrinsic and Forced Ocean Variabilities at Interannual Time Scales , 2011 .

[85]  Louis I. Gordon,et al.  Oxygen solubility in seawater : better fitting equations , 1992 .

[86]  R. Weiss Helium Isotope Effect in Solution in Water and Seawater , 1970, Science.

[87]  Rik,et al.  Relationship Between Wind Speed and Gas Exchange , 2013 .

[88]  R. Weiss,et al.  Reconstructed histories of the annual mean atmospheric mole fractions for the halocarbons CFC‐11 CFC‐12, CFC‐113, and carbon tetrachloride , 2000 .

[89]  Scott C. Doney,et al.  Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models , 2002 .

[90]  Sylvain Watelet,et al.  A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2 , 2016 .

[91]  S. Gorshkov,et al.  World ocean atlas , 1976 .

[92]  Thomas W. N. Haine,et al.  Relationships among tracer ages , 2003 .

[93]  Andrew G. Dickson,et al.  Guide to best practices for ocean CO2 measurements , 2007 .

[94]  F. Joos,et al.  Ocean carbon transport in a box‐diffusion versus a general circulation model , 1997 .

[95]  E. Galbraith,et al.  How well do global ocean biogeochemistry models simulate dissolved iron distributions? , 2016 .

[96]  J. Orr,et al.  Improved routines to model the ocean carbonate system: mocsy 2.0 , 2015 .

[97]  J.-F. Minster,et al.  Tracers in the Sea , 1982 .

[98]  James C. Orr,et al.  Improved routines to model the ocean carbonate system: mocsy 1.0 , 2014 .