Evidences of seismic events during the sedimentation of Sete Lagoas Formation (Bambuí Group – Ediacaran, Brazil)
暂无分享,去创建一个
[1] E. Pereira,et al. Ediacaran paleoenvironmental changes recorded in the mixed carbonate-siliciclastic Bambuí Basin, Brazil , 2019, Palaeogeography, Palaeoclimatology, Palaeoecology.
[2] U. Schaltegger,et al. New high‐resolution age data from the Ediacaran–Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion , 2018, Terra Nova.
[3] J. Pandolfi,et al. Unravelling the depositional origins and diagenetic alteration of carbonate breccias , 2017 .
[4] A. C. Pedrosa-Soares,et al. Análise de fácies, estratigrafia de sequências e quimioestratigrafia da Formação Sete Lagoas (Grupo Bambuí), norte do Estado de Minas Gerais, Brasil: Evidência de um carbonato de capa depositado sobre o Alto de Januária. , 2017 .
[5] G. Cox,et al. The Carrancas Formation, Bambuí Group: A record of pre-Marinoan sedimentation on the southern São Francisco craton, Brazil , 2016 .
[6] L. Cherns,et al. Leaving no stone unturned: the feedback between increased biotic diversity and early diagenesis during the Ordovician , 2015, Journal of the Geological Society.
[7] M. Babinski,et al. New evidence of an Ediacaran age for the Bambuí Group in southern São Francisco craton (eastern Brazil) from zircon U–Pb data and isotope chemostratigraphy , 2015 .
[8] Christopher P. Reed,et al. Enigmatic carbonates of the Ombombo Subgroup, Otavi Fold Belt, Namibia: A prelude to extreme Cryogenian anoxia? , 2015 .
[9] P. Myrow,et al. Estimates of large magnitude Late Cambrian earthquakes from seismogenic soft‐sediment deformation structures: Central Rocky Mountains , 2015 .
[10] S. Lugli,et al. From carbonate–sulphate interbeds to carbonate breccias: The role of tectonic deformation and diagenetic processes (Cameros Basin, Lower Cretaceous, N Spain) , 2014 .
[11] R. Santos,et al. Meso-Neoproterozoic isotope stratigraphy on carbonates platforms in the Brasilia Belt of Brazil , 2014 .
[12] C. Riccomini,et al. The puzzle assembled: Ediacaran guide fossil Cloudina reveals an old proto-Gondwana seaway , 2014 .
[13] M. E. Farías,et al. Peritidal cyclic sedimentation from La Manga Formation (Oxfordian), Neuquén Basin, Mendoza, Argentina , 2013 .
[14] Hyun Suk Lee,et al. Soft-sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits (Shandong Province, China): Differential liquefaction and fluidization triggered by storm-wave loading , 2013 .
[15] Moyra E. J. Wilson,et al. Diagenesis of a SE Asian Cenozoic carbonate platform margin and its adjacent basinal deposits , 2013 .
[16] Moyra E. J. Wilson,et al. Spatio-temporal evolution of a Tertiary carbonate platform margin and adjacent basinal deposits , 2012 .
[17] R. Stevenson,et al. Marinoan glaciation in east central Brazil , 2012 .
[18] Dunyi Liu,et al. Neoproterozoic glacial deposits from the Araçuaí orogen, Brazil: Age, provenance and correlations with the São Francisco craton and West Congo belt , 2012 .
[19] V. S. Kale,et al. Seismites in the Lokapur Subgroup of the Proterozoic Kaladgi Basin, South India: A testimony to syn-sedimentary tectonism , 2011 .
[20] G. Owen,et al. Identifying triggers for liquefaction-induced soft-sediment deformation in sands , 2011 .
[21] G. Owen,et al. Recognising triggers for soft-sediment deformation: Current understanding and future directions ☆ , 2011 .
[22] D. Kietzmann,et al. Earthquake-induced soft-sediment deformation structures in Upper Jurassic open-marine microbialites (Neuquén Basin, Argentina) , 2011 .
[23] S. Chough,et al. Funnel-shaped, breccia-filled clastic dykes in the Late Cambrian Chaomidian Formation (Shandong Province, China) , 2009 .
[24] Dunyi Liu,et al. Neoproterozoic glacial dynamics revealed by provenance of diamictites of the Bebedouro Formation, São Francisco Craton, Central Eastern Brazil , 2009 .
[25] S. Chough,et al. Limestone pseudoconglomerates in the Late Cambrian Gushan and Chaomidian Formations (Shandong Province, China): soft‐sediment deformation induced by storm‐wave loading , 2009 .
[26] R. Santos,et al. Chapter 3 The São Francisco Palaeocontinent , 2009 .
[27] Ricardo I. F. Trindade,et al. A Formação Sete Lagoas em sua área-tipo: fácies, estratigrafia e sistemas deposicionais , 2007 .
[28] M. Babinski,et al. Direct dating of the Sete Lagoas cap carbonate (Bambuí Group, Brazil) and implications for the Neoproterozoic glacial events , 2007 .
[29] B. Pratt,et al. Tsunamis in a Stormy Sea: Middle Cambrian Inner-Shelf Limestones of Western Argentina , 2007 .
[30] L. Spalluto,et al. Seismically-induced slumps in Lower-Maastrichtian peritidal carbonates of the Apulian Platform (southern Italy) , 2007 .
[31] C. Montenat,et al. Seismites: An attempt at critical analysis and classification , 2007 .
[32] M. Ader,et al. Identification of a Sturtian cap carbonate in the Neoproterozoic Sete Lagoas carbonate platform, Bambuí Group, Brazil , 2007 .
[33] S. S. Iyer,et al. Chemostratigraphic correlation of Neoproterozoic successions in South America , 2007 .
[34] Maoyan Zhu,et al. Large-scale slope instability at the southern margin of the Ediacaran Yangtze platform (Hunan province, central China) , 2006 .
[35] R. Riding. Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time , 2006 .
[36] A. Agnon,et al. Intraclast breccias in laminated sequences reviewed: Recorders of paleo-earthquakes , 2006 .
[37] C. Galdeano,et al. Seismic-induced slump in Early Pleistocene deltaic deposits of the Baza Basin (SE Spain) , 2005 .
[38] S. S. Iyer,et al. Sediment hosted lead–zinc deposits of the Neoproterozoic Bambuí Group and correlative sequences, São Francisco Craton, Brazil: A review and a possible metallogenic evolution model , 2005 .
[39] D. Bottjer,et al. The unusual sedimentary rock record of the Early Triassic: A case study from the southwestern United States , 2005 .
[40] P. Allen,et al. Evolution of a terminal Neoproterozoic carbonate ramp system (Buah Formation, Sultanate of Oman): Effects of basement paleotopography , 2004 .
[41] P. Myrow,et al. Flat‐pebble conglomerate: its multiple origins and relationship to metre‐scale depositional cycles , 2004 .
[42] C. Riccomini,et al. Soft-sediment deformation at the base of the Neoproterozoic Puga cap carbonate (southwestern Amazon craton, Brazil): Confirmation of rapid icehouse to greenhouse transition in snowball Earth , 2003 .
[43] B. Pratt. Tepees in peritidal carbonates: origin via earthquake-induced deformation, with example from the Middle Cambrian of western Canada , 2002 .
[44] J. N. Lopes,et al. Diagenesis of the dolomites hosting Zn/Ag mineral deposits in the Bambui Group at Januaria Region-MG , 2002 .
[45] B. Pratt. Storms versus tsunamis: Dynamic interplay of sedimentary, diagenetic, and tectonic processes in the Cambrian of Montana , 2002 .
[46] J. Delgado,et al. Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, southern Spain) , 2002 .
[47] S. Chough,et al. Origin of limestone conglomerates in the Choson Supergroup (Cambro–Ordovician), mid-east Korea , 2002 .
[48] C. F. Kahle. Seismogenic Deformation Structures in Microbialites and Mudstones, Silurian Lockport Dolomite, Northwestern Ohio, U.S.A. , 2002 .
[49] A. Pedrosa-Soares,et al. Tectono-sedimentary evolution of sedimentary basins from Late Paleoproterozoic to Late Neoproterozoic in the São Francisco craton and Araçuaı́ fold belt, eastern Brazil , 2001 .
[50] J. Kullberg,et al. Flat-pebble conglomerates: a local marker for Early Jurassic seismicity related to syn-rift tectonics in the Sesimbra area (Lusitanian Basin, Portugal) , 2001 .
[51] K. Omoto,et al. Towards establishing criteria for identifying trigger mechanisms for soft‐sediment deformation: a case study of Late Pleistocene lacustrine sands and clays, Onikobe and Nakayamadaira Basins, northeastern Japan , 2000 .
[52] J. Calvo,et al. Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene , 2000 .
[53] R. Twitchett,et al. Unusual intraclastic limestones in Lower Triassic carbonates and their bearing on the aftermath of the end‐Permian mass extinction , 1999 .
[54] T. Lyons,et al. MOLAR-TOOTH' STRUCTURES : A GEOCHEMICAL PERSPECTIVE ON A PROTEROZOIC ENIGMA , 1998 .
[55] H. N. Bhattacharya,et al. Seismites in a Proterozoic tidal succession, Singhbhum, Bihar, India , 1998 .
[56] Moretti,et al. Soft‐sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir Basin, Spain) , 1998 .
[57] M. Tucker,et al. Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: a review , 1997 .
[58] M. Kennedy. Stratigraphy, sedimentology, and isotopic geochemistry of Australian Neoproterozoic postglacial cap dolostones; deglaciation, delta 13 C excursions, and carbonate precipitation , 1996 .
[59] B. Pratt. Seismites in the Mesoproterozoic Altyn Formation (Belt Supergroup), Montana: A test for tectonic control of peritidal carbonate cyclicity , 1994 .
[60] S. Marshak,et al. Proterozoic contraction/extension tectonics of the southern SÃO Francisco Region, Minas Gerais, Brazil , 1989 .
[61] J. Warren,et al. A review of the origin and setting of tepees and their associated fabrics , 1987 .
[62] J. Sepkoski. Flat-Pebble Conglomerates, Storm Deposits, and the Cambrian Bottom Fauna , 1982 .
[63] R. Goldring,et al. Subtidal flat-pebble conglomerate from the Upper Devonian of Poland: a multiprovenant high-energy product , 1978, Geological Magazine.
[64] J. Sims. Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments , 1975 .