Evidences of seismic events during the sedimentation of Sete Lagoas Formation (Bambuí Group – Ediacaran, Brazil)

[1]  E. Pereira,et al.  Ediacaran paleoenvironmental changes recorded in the mixed carbonate-siliciclastic Bambuí Basin, Brazil , 2019, Palaeogeography, Palaeoclimatology, Palaeoecology.

[2]  U. Schaltegger,et al.  New high‐resolution age data from the Ediacaran–Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion , 2018, Terra Nova.

[3]  J. Pandolfi,et al.  Unravelling the depositional origins and diagenetic alteration of carbonate breccias , 2017 .

[4]  A. C. Pedrosa-Soares,et al.  Análise de fácies, estratigrafia de sequências e quimioestratigrafia da Formação Sete Lagoas (Grupo Bambuí), norte do Estado de Minas Gerais, Brasil: Evidência de um carbonato de capa depositado sobre o Alto de Januária. , 2017 .

[5]  G. Cox,et al.  The Carrancas Formation, Bambuí Group: A record of pre-Marinoan sedimentation on the southern São Francisco craton, Brazil , 2016 .

[6]  L. Cherns,et al.  Leaving no stone unturned: the feedback between increased biotic diversity and early diagenesis during the Ordovician , 2015, Journal of the Geological Society.

[7]  M. Babinski,et al.  New evidence of an Ediacaran age for the Bambuí Group in southern São Francisco craton (eastern Brazil) from zircon U–Pb data and isotope chemostratigraphy , 2015 .

[8]  Christopher P. Reed,et al.  Enigmatic carbonates of the Ombombo Subgroup, Otavi Fold Belt, Namibia: A prelude to extreme Cryogenian anoxia? , 2015 .

[9]  P. Myrow,et al.  Estimates of large magnitude Late Cambrian earthquakes from seismogenic soft‐sediment deformation structures: Central Rocky Mountains , 2015 .

[10]  S. Lugli,et al.  From carbonate–sulphate interbeds to carbonate breccias: The role of tectonic deformation and diagenetic processes (Cameros Basin, Lower Cretaceous, N Spain) , 2014 .

[11]  R. Santos,et al.  Meso-Neoproterozoic isotope stratigraphy on carbonates platforms in the Brasilia Belt of Brazil , 2014 .

[12]  C. Riccomini,et al.  The puzzle assembled: Ediacaran guide fossil Cloudina reveals an old proto-Gondwana seaway , 2014 .

[13]  M. E. Farías,et al.  Peritidal cyclic sedimentation from La Manga Formation (Oxfordian), Neuquén Basin, Mendoza, Argentina , 2013 .

[14]  Hyun Suk Lee,et al.  Soft-sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits (Shandong Province, China): Differential liquefaction and fluidization triggered by storm-wave loading , 2013 .

[15]  Moyra E. J. Wilson,et al.  Diagenesis of a SE Asian Cenozoic carbonate platform margin and its adjacent basinal deposits , 2013 .

[16]  Moyra E. J. Wilson,et al.  Spatio-temporal evolution of a Tertiary carbonate platform margin and adjacent basinal deposits , 2012 .

[17]  R. Stevenson,et al.  Marinoan glaciation in east central Brazil , 2012 .

[18]  Dunyi Liu,et al.  Neoproterozoic glacial deposits from the Araçuaí orogen, Brazil: Age, provenance and correlations with the São Francisco craton and West Congo belt , 2012 .

[19]  V. S. Kale,et al.  Seismites in the Lokapur Subgroup of the Proterozoic Kaladgi Basin, South India: A testimony to syn-sedimentary tectonism , 2011 .

[20]  G. Owen,et al.  Identifying triggers for liquefaction-induced soft-sediment deformation in sands , 2011 .

[21]  G. Owen,et al.  Recognising triggers for soft-sediment deformation: Current understanding and future directions ☆ , 2011 .

[22]  D. Kietzmann,et al.  Earthquake-induced soft-sediment deformation structures in Upper Jurassic open-marine microbialites (Neuquén Basin, Argentina) , 2011 .

[23]  S. Chough,et al.  Funnel-shaped, breccia-filled clastic dykes in the Late Cambrian Chaomidian Formation (Shandong Province, China) , 2009 .

[24]  Dunyi Liu,et al.  Neoproterozoic glacial dynamics revealed by provenance of diamictites of the Bebedouro Formation, São Francisco Craton, Central Eastern Brazil , 2009 .

[25]  S. Chough,et al.  Limestone pseudoconglomerates in the Late Cambrian Gushan and Chaomidian Formations (Shandong Province, China): soft‐sediment deformation induced by storm‐wave loading , 2009 .

[26]  R. Santos,et al.  Chapter 3 The São Francisco Palaeocontinent , 2009 .

[27]  Ricardo I. F. Trindade,et al.  A Formação Sete Lagoas em sua área-tipo: fácies, estratigrafia e sistemas deposicionais , 2007 .

[28]  M. Babinski,et al.  Direct dating of the Sete Lagoas cap carbonate (Bambuí Group, Brazil) and implications for the Neoproterozoic glacial events , 2007 .

[29]  B. Pratt,et al.  Tsunamis in a Stormy Sea: Middle Cambrian Inner-Shelf Limestones of Western Argentina , 2007 .

[30]  L. Spalluto,et al.  Seismically-induced slumps in Lower-Maastrichtian peritidal carbonates of the Apulian Platform (southern Italy) , 2007 .

[31]  C. Montenat,et al.  Seismites: An attempt at critical analysis and classification , 2007 .

[32]  M. Ader,et al.  Identification of a Sturtian cap carbonate in the Neoproterozoic Sete Lagoas carbonate platform, Bambuí Group, Brazil , 2007 .

[33]  S. S. Iyer,et al.  Chemostratigraphic correlation of Neoproterozoic successions in South America , 2007 .

[34]  Maoyan Zhu,et al.  Large-scale slope instability at the southern margin of the Ediacaran Yangtze platform (Hunan province, central China) , 2006 .

[35]  R. Riding Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time , 2006 .

[36]  A. Agnon,et al.  Intraclast breccias in laminated sequences reviewed: Recorders of paleo-earthquakes , 2006 .

[37]  C. Galdeano,et al.  Seismic-induced slump in Early Pleistocene deltaic deposits of the Baza Basin (SE Spain) , 2005 .

[38]  S. S. Iyer,et al.  Sediment hosted lead–zinc deposits of the Neoproterozoic Bambuí Group and correlative sequences, São Francisco Craton, Brazil: A review and a possible metallogenic evolution model , 2005 .

[39]  D. Bottjer,et al.  The unusual sedimentary rock record of the Early Triassic: A case study from the southwestern United States , 2005 .

[40]  P. Allen,et al.  Evolution of a terminal Neoproterozoic carbonate ramp system (Buah Formation, Sultanate of Oman): Effects of basement paleotopography , 2004 .

[41]  P. Myrow,et al.  Flat‐pebble conglomerate: its multiple origins and relationship to metre‐scale depositional cycles , 2004 .

[42]  C. Riccomini,et al.  Soft-sediment deformation at the base of the Neoproterozoic Puga cap carbonate (southwestern Amazon craton, Brazil): Confirmation of rapid icehouse to greenhouse transition in snowball Earth , 2003 .

[43]  B. Pratt Tepees in peritidal carbonates: origin via earthquake-induced deformation, with example from the Middle Cambrian of western Canada , 2002 .

[44]  J. N. Lopes,et al.  Diagenesis of the dolomites hosting Zn/Ag mineral deposits in the Bambui Group at Januaria Region-MG , 2002 .

[45]  B. Pratt Storms versus tsunamis: Dynamic interplay of sedimentary, diagenetic, and tectonic processes in the Cambrian of Montana , 2002 .

[46]  J. Delgado,et al.  Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, southern Spain) , 2002 .

[47]  S. Chough,et al.  Origin of limestone conglomerates in the Choson Supergroup (Cambro–Ordovician), mid-east Korea , 2002 .

[48]  C. F. Kahle Seismogenic Deformation Structures in Microbialites and Mudstones, Silurian Lockport Dolomite, Northwestern Ohio, U.S.A. , 2002 .

[49]  A. Pedrosa-Soares,et al.  Tectono-sedimentary evolution of sedimentary basins from Late Paleoproterozoic to Late Neoproterozoic in the São Francisco craton and Araçuaı́ fold belt, eastern Brazil , 2001 .

[50]  J. Kullberg,et al.  Flat-pebble conglomerates: a local marker for Early Jurassic seismicity related to syn-rift tectonics in the Sesimbra area (Lusitanian Basin, Portugal) , 2001 .

[51]  K. Omoto,et al.  Towards establishing criteria for identifying trigger mechanisms for soft‐sediment deformation: a case study of Late Pleistocene lacustrine sands and clays, Onikobe and Nakayamadaira Basins, northeastern Japan , 2000 .

[52]  J. Calvo,et al.  Soft-sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake magnitudes during the Late Miocene , 2000 .

[53]  R. Twitchett,et al.  Unusual intraclastic limestones in Lower Triassic carbonates and their bearing on the aftermath of the end‐Permian mass extinction , 1999 .

[54]  T. Lyons,et al.  MOLAR-TOOTH' STRUCTURES : A GEOCHEMICAL PERSPECTIVE ON A PROTEROZOIC ENIGMA , 1998 .

[55]  H. N. Bhattacharya,et al.  Seismites in a Proterozoic tidal succession, Singhbhum, Bihar, India , 1998 .

[56]  Moretti,et al.  Soft‐sediment deformation structures induced by cyclic stress of storm waves in tempestites (Miocene, Guadalquivir Basin, Spain) , 1998 .

[57]  M. Tucker,et al.  Genesis of limestone megabreccias and their significance in carbonate sequence stratigraphic models: a review , 1997 .

[58]  M. Kennedy Stratigraphy, sedimentology, and isotopic geochemistry of Australian Neoproterozoic postglacial cap dolostones; deglaciation, delta 13 C excursions, and carbonate precipitation , 1996 .

[59]  B. Pratt Seismites in the Mesoproterozoic Altyn Formation (Belt Supergroup), Montana: A test for tectonic control of peritidal carbonate cyclicity , 1994 .

[60]  S. Marshak,et al.  Proterozoic contraction/extension tectonics of the southern SÃO Francisco Region, Minas Gerais, Brazil , 1989 .

[61]  J. Warren,et al.  A review of the origin and setting of tepees and their associated fabrics , 1987 .

[62]  J. Sepkoski Flat-Pebble Conglomerates, Storm Deposits, and the Cambrian Bottom Fauna , 1982 .

[63]  R. Goldring,et al.  Subtidal flat-pebble conglomerate from the Upper Devonian of Poland: a multiprovenant high-energy product , 1978, Geological Magazine.

[64]  J. Sims Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments , 1975 .