Variation in left ventricular regional wall stress with cine magnetic resonance imaging: normal subjects versus dilated cardiomyopathy.

[1]  J. Rumberger,et al.  Ultrafast Computed Tomography Analysis of Regional Radius‐to‐Wall Thickness Ratios in Normal and Volume‐Overloaded Human Left Ventricle , 1992, Circulation.

[2]  Samuel Sideman,et al.  Regional Three‐Dimensional Geometry and Function of Left Ventricles With Fibrous Aneurysms: A Cine‐Computed Tomography Study , 1991, Circulation.

[3]  C. Higgins,et al.  Noninvasive determination of left ventricular output and wall stress in volume overload and in myocardial disease by cine magnetic resonance imaging. , 1991, American heart journal.

[4]  C Kawai,et al.  Left ventricular regional wall stress in dilated cardiomyopathy. , 1990, Circulation.

[5]  C. Higgins,et al.  Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle. , 1990, American heart journal.

[6]  E Tomei,et al.  Normal left ventricular dimensions and function: interstudy reproducibility of measurements with cine MR imaging. , 1990, Radiology.

[7]  N. Reichek,et al.  Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. , 1989, Journal of the American Society of Echocardiography : official publication of the American Society of Echocardiography.

[8]  M. Marcus,et al.  Patterns of regional diastolic function in the normal human left ventricle: an ultrafast computed tomographic study. , 1989, Journal of the American College of Cardiology.

[9]  S. M. Collins,et al.  Sectional and segmental variability of left ventricular function: experimental and clinical studies using ultrafast computed tomography. , 1988, Journal of the American College of Cardiology.

[10]  J. Carroll,et al.  Physiologic mechanisms governing hemodynamic responses to positive inotropic therapy in patients with dilated cardiomyopathy. , 1988, Circulation.

[11]  N. Reichek,et al.  Contribution of afterload, hypertrophy and geometry to left ventricular ejection fraction in aortic valve stenosis, pure aortic regurgitation and idiopathic dilated cardiomyopathy. , 1987, The American journal of cardiology.

[12]  N. Reichek,et al.  Comparison of Echocardiographic Methods for Assessment of Left Ventricular Shortening and Wall Stress , 1987, Journal of the American College of Cardiology.

[13]  A. Bouchard,et al.  Left ventricular mass and volume/mass ratio determined by two-dimensional echocardiography in normal adults. , 1985, Journal of the American College of Cardiology.

[14]  R A Levine,et al.  Magnetic resonance imaging of the heart: positioning and gradient angle selection for optimal imaging planes. , 1984, AJR. American journal of roentgenology.

[15]  W. Laskey,et al.  Left ventricular mechanics in dilated cardiomyopathy. , 1984, The American journal of cardiology.

[16]  M. Rousseau,et al.  Assessment of regional left ventricular relaxation in patients with coronary artery disease: importance of geometric factors and changes in wall thickness. , 1984, Circulation.

[17]  Y. Hirota,et al.  Mechanisms of compensation and decompensation in dilated cardiomyopathy. , 1984, The American journal of cardiology.

[18]  E. Braunwald,et al.  Left ventricular end-systolic stress-shortening and stress-length relations in human. Normal values and sensitivity to inotropic state. , 1982, The American journal of cardiology.

[19]  R. Janz,et al.  Estimation of local myocardial stress. , 1982, The American journal of physiology.

[20]  F. Yin,et al.  Ventricular wall stress. , 1981, Circulation research.

[21]  Weber Kt,et al.  Descriptors and determinants of cardiac shape: an overview. , 1981 .

[22]  S. Shroff,et al.  Regional and global shape and size of the intact myocardium. , 1981, Federation proceedings.

[23]  J. S. Rankin,et al.  Dynamic geometry of the intact left ventricle. , 1981, Federation proceedings.

[24]  P. Cohn,et al.  Left ventricular end-systolic pressure-dimension and stress-length relations in normal human subjects. , 1979, The American journal of cardiology.

[25]  B. Strauer,et al.  Myocardial oxygen consumption in chronic heart disease: role of wall stress, hypertrophy and coronary reserve. , 1979, The American journal of cardiology.

[26]  J. Covell,et al.  Early Changes in Left Ventricular Regional Dimensions and Function during Chronic Volume Overloading in the Conscious Dog , 1979, Circulation research.

[27]  W. Grossman,et al.  Determinants of Ventricular Function in Pressure-Overload Hypertrophy in Man , 1979, Circulation.

[28]  W Grossman,et al.  Contractile State of the Left Ventricle in Man as Evaluated from End‐systolic Pressure‐Volume Relations , 1977, Circulation.

[29]  W Grossman,et al.  Wall stress and patterns of hypertrophy in the human left ventricle. , 1975, The Journal of clinical investigation.

[30]  K. Lipscomb,et al.  Relation of left ventricular shape, function and wall stress in man. , 1974, The American journal of cardiology.

[31]  W. Grossman,et al.  Determination of Systemic Vascular Resistance by a Noninvasive Technic , 1973, Circulation.

[32]  W. Gaasch,et al.  Left Ventricular Stress and Compliance in Man: With Special Reference to Normalized Ventricular Function Curves , 1972, Circulation.

[33]  I. Mirsky,et al.  Left ventricular stresses in the intact human heart. , 1969, Biophysical journal.

[34]  P. Rautaharju,et al.  Stress distribution within the left ventricular wall approximated as a thick ellipsoidal shell. , 1968, American heart journal.

[35]  E. Braunwald,et al.  Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time index. , 1957, The American journal of physiology.

[36]  A C BURTON,et al.  The importance of the shape and size of the heart. , 1957, American heart journal.