Hierarchical parameter estimation of DFIG and drive train system in a wind turbine generator

A new hierarchical parameter estimation method for doubly fed induction generator (DFIG) and drive train system in a wind turbine generator (WTG) is proposed in this paper. Firstly, the parameters of the DFIG and the drive train are estimated locally under different types of disturbances. Secondly, a coordination estimation method is further applied to identify the parameters of the DFIG and the drive train simultaneously with the purpose of attaining the global optimal estimation results. The main benefit of the proposed scheme is the improved estimation accuracy. Estimation results confirm the applicability of the proposed estimation technique.

[1]  Francisco Jimenez Buendia,et al.  Validation of a Mechanical Model for Fault Ride-Through: Application to a Gamesa G52 Commercial Wind Turbine , 2013, IEEE Transactions on Energy Conversion.

[2]  Bikash C. Pal,et al.  Modal Analysis of Grid-Connected Doubly Fed Induction Generators , 2007 .

[3]  I.A. Hiskens,et al.  Estimating wind turbine parameters and quantifying their effects on dynamic behavior , 2008, 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century.

[4]  Antonio Vigueras-Rodríguez,et al.  Validation of a DFIG wind turbine model submitted to two-phase voltage dips following the Spanish grid code , 2013 .

[5]  O. Gomis-Bellmunt,et al.  Modeling and Validation of DFIG 3-MW Wind Turbine Using Field Test Data of Balanced and Unbalanced Voltage Sags , 2011, IEEE Transactions on Sustainable Energy.

[6]  Jin Yuqing A Two-step Method for Estimating DFIG Parameters in a Wind Turbine and the Measurement Selection , 2013 .

[7]  Vladislav Akhmatov,et al.  Contribution to a dynamic wind turbine model validation from a wind farm islanding experiment , 2003 .

[8]  Francisco Gonzalez-Longatt,et al.  Fixed speed wind generator model parameter estimation using improved particle swarm optimization and system frequency disturbances , 2011 .

[9]  J. MacDowell,et al.  Model Validation for Wind Turbine Generator Models , 2011, IEEE Transactions on Power Systems.

[10]  Michel Verhaegen,et al.  Global data-driven modeling of wind turbines in the presence of turbulence , 2013 .

[11]  Antonio Vigueras-Rodríguez,et al.  Validation of a double fed induction generator wind turbine model and wind farm verification following the Spanish grid code , 2012 .

[12]  B. Fox,et al.  Validation of Fixed Speed Induction Generator Models for Inertial Response Using Wind Farm Measurements , 2011, IEEE Transactions on Power Systems.

[13]  H. J. Vermeulen,et al.  Parameter estimation of a doubly-fed induction generator in a wind generation topology , 2012, 2012 47th International Universities Power Engineering Conference (UPEC).

[14]  Richard Gagnon,et al.  Validation of Single- and Multiple-Machine Equivalents for Modeling Wind Power Plants , 2011 .

[15]  Jorun Irene Marvik,et al.  Wind Turbine Model Validation with Measurements , 2012 .

[16]  Xiao-Ping Zhang,et al.  Small signal stability analysis and optimal control of a wind turbine with doubly fed induction generator , 2007 .

[17]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..