Thermal Infrared Remote Sensing of Geothermal Systems

In areas of anomalously high crustal heat flow, geothermal systems transfer heat to the Earth’s surface often forming surface expressions such as hot springs, fumaroles, heated ground, and associated mineral deposits. Geothermal systems are increasingly important as sources of renewable energy, or as natural wonders of protected status attracting tourists, and their study is relevant to monitoring deeper magmatic processes. Thermal infrared (TIR) remote sensing provides a unique tool for mapping the surface expressions of geothermal activity as applied to the exploration for new geothermal power resources and long term monitoring studies. In this chapter, we present a review of TIR remote sensing for investigations of geothermal systems. This includes a discussion on the applications of TIR remote sensing to the mapping of surface temperature anomalies associated with geothermal activity, measurements of near-surface heat fluxes associated with these features as input into monitoring and resource assessment, and the mapping of surface mineral indicators of both active and recently active hydrothermal systems.

[1]  S. Hook,et al.  The ASTER spectral library version 2.0 , 2009 .

[2]  Ronald DiPippo,et al.  Geothermal Power Plants , 2021, Reference Module in Earth Systems and Environmental Sciences.

[3]  Fred A. Kruse Combined SWIR and LWIR mineral mapping using MASTER/ASTER , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[4]  R. Colwell Remote sensing of the environment , 1980, Nature.

[5]  Michael S. Ramsey,et al.  ASTER and field observations of the 24 December 2006 eruption of Bezymianny Volcano, Russia , 2008 .

[6]  I. B. Fridleifsson,et al.  The possible role and contribution of geothermal energy to the mitigation of climate change , 2008 .

[7]  W. Calvin,et al.  Geothermal Exploration using AVIRIS Remote Sensing Data over Fish Lake Valley , NV , 2010 .

[8]  David C. Pieri,et al.  ASTER watches the world's volcanoes: a new paradigm for volcanological observations from orbit , 2004 .

[9]  S. Hook,et al.  The MODIS/ASTER airborne simulator (MASTER) - a new instrument for earth science studies , 2001 .

[10]  G. Bock,et al.  Evolution of hydrothermal ecosystems on Earth (and Mars , 1998 .

[11]  W. Calvin,et al.  SEBASS hyperspectral thermal infrared data: surface emissivity measurement and mineral mapping , 2003 .

[12]  W. Calvin,et al.  Detection of geothermal anomalies using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA , 2007 .

[13]  L. Muffler,et al.  Geothermal systems: Principles and case histories , 1981 .

[14]  Y. Ninomiya,et al.  Detecting lithology with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) multispectral thermal infrared “radiance-at-sensor” data , 2005 .

[15]  W. Glassley Geothermal Energy: Renewable Energy and the Environment , 2010 .

[16]  K. Lee,et al.  Analysis of thermal infrared imagery of the Black Rock Desert geothermal area , 1978 .

[17]  Duncan Foley,et al.  Geothermal systems and monitoring hydrothermal features , 2009 .

[18]  Jim Combs,et al.  Application of Satellite Thermal Infrared Imagery to Geothermal Explor ation in East Central California , 2006 .

[19]  Fred A. Kruse,et al.  Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping , 2003, IEEE Trans. Geosci. Remote. Sens..

[20]  W. Calvin,et al.  Surface mineral mapping at Steamboat Springs, Nevada, USA, with multi-wavelength thermal infrared images , 2005 .

[21]  M. Ramsey,et al.  Mineral abundance determination: Quantitative deconvolution of thermal emission spectra , 1998 .

[22]  J. Huntington,et al.  The role of remote sensing in finding hydrothermal mineral deposits on earth. , 2007, Ciba Foundation symposium.

[23]  W. Calvin,et al.  Geothermal exploration with Hymap hyperspectral data at Brady¿Desert Peak, Nevada , 2006 .

[24]  G. Johnson,et al.  Hyperspectral detection of geothermal system-related soil mineralogy anomalies in Dixie Valley, Nevada: a tool for exploration , 2004 .

[25]  Alvaro Penteado Crósta,et al.  Remote Sensing and Spectral Geology , 2009 .

[26]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[27]  R. Allis Changes in heat flow associated with exploitation of Wairakei Geothermal Field, New Zealand , 1981 .

[28]  Shuichi Rokugawa,et al.  A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images , 1998, IEEE Trans. Geosci. Remote. Sens..

[29]  G. Hunt SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED , 1977 .

[30]  Ma Mongillo,et al.  Aerial thermal infrared mapping of the Waimangu-Waiotapu geothermal region, New Zealand , 1994 .

[31]  Mark Coolbaugh,et al.  Importance of Elevation and Temperature Inversions for the Interpretation of Thermal Infrared Satellite Images Used in Geothermal Exploration , 2009 .

[32]  D. C. Robertson,et al.  MODTRAN: A Moderate Resolution Model for LOWTRAN , 1987 .

[33]  M. Ramsey,et al.  Analysis of hot springs and associated deposits in Yellowstone National Park using ASTER and AVIRIS remote sensing , 2004 .

[34]  K. Reath Hyperspectral Thermal Infrared Analysis of the Salton Sea Geothermal Field , 2011 .

[35]  D. A. Howard,et al.  A thermal emission spectral library of rock-forming minerals , 2000 .

[36]  David W. Warren,et al.  LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing , 1996, Optics & Photonics.

[37]  A. Berk MODTRAN : A moderate resolution model for LOWTRAN7 , 1989 .

[38]  B. Rockwell,et al.  Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data—Implications for geologic mapping and mineral resource investigations in well-studied and frontier areas , 2008 .

[39]  Robert A. Garrott,et al.  Development and comparison of Landsat radiometric and snowpack model inversion techniques for estimating geothermal heat flux , 2008 .

[40]  S. K. Stevens Fall meeting , 1942 .

[41]  D. T. Hodder,et al.  Application of remote sensing to geothermal prospecting , 1970 .