A universal state-selective approach to multireference coupled-cluster non-iterative corrections.

A new form of the asymmetric energy functional for multireference coupled cluster (MRCC) theories is discussed from the point of view of an energy expansion in a quasidegenerate situation. The resulting expansion for the exact electronic energy can be used to define the non-iterative corrections to approximate MRCC approaches. In particular, we show that in the proposed framework the essential part of dynamic correlation can be encapsulated in the so-called correlation Hamiltonian, which in analogy to the effective Hamiltonian, is defined in the model space (M(0)). The proper parametrization of the exact/trial wavefunctions leads to the cancellation of the overlap-type numerators and to a connected form of the correlation Hamiltonian and size-extensive energies. Within this parametrization, when the trial wavefunctions are determined without invoking a specific form of the MRCC sufficiency conditions, the ensuing correction can be universally applied to any type of the approximate MRCC method. The analogies with other MRCC triples corrections to MRCC theories with singles and doubles (MRCCSD) are outlined. In particular, we discuss the approach, which in analogy to the Λ-Mk-MRCCSD(T) method [F. A. Evangelista, E. Prochnow, J. Gauss, H. F. Schaefer III, J. Chem. Phys. 132, 074107 (2010)], introduces an approximate form of the triply-excited clusters into the effective and correlation Hamiltonians. Since the discussed corrections can be calculated as a sum of independent reference-related contributions, possible parallel algorithms are also outlined.

[1]  Kiran Bhaskaran-Nair,et al.  Multireference state-specific Mukherjee's coupled cluster method with noniterative triexcitations using uncoupled approximation. , 2011, The Journal of chemical physics.

[2]  Josef Paldus,et al.  Multireference general-model-space state-universal and state-specific coupled-cluster approaches to excited states. , 2010, The Journal of chemical physics.

[3]  J. Paldus,et al.  A multireference coupled-cluster study of electronic excitations in furan and pyrrole. , 2010, The journal of physical chemistry. A.

[4]  Uttam Sinha Mahapatra,et al.  Potential energy surface studies via a single root multireference coupled cluster theory. , 2010, The Journal of chemical physics.

[5]  Francesco A. Evangelista,et al.  Insights into the orbital invariance problem in state-specific multireference coupled cluster theory. , 2010, The Journal of chemical physics.

[6]  J. Paldus,et al.  Performance of multireference and equation-of-motion coupled-cluster methods for potential energy surfaces of low-lying excited states: symmetric and asymmetric dissociation of water. , 2010, The Journal of chemical physics.

[7]  Kiran Bhaskaran-Nair,et al.  Multireference Mukherjee's coupled cluster method with triexcitations in the linked formulation: Efficient implementation and applications. , 2010, The Journal of chemical physics.

[8]  J. Paldus,et al.  Force field of para- and metabenzyne diradicals: a multireference coupled-cluster study. , 2010, The Journal of chemical physics.

[9]  Francesco A Evangelista,et al.  Perturbative triples corrections in state-specific multireference coupled cluster theory. , 2010, The Journal of chemical physics.

[10]  Sanghamitra Das,et al.  Full implementation and benchmark studies of Mukherjee's state-specific multireference coupled-cluster ansatz. , 2010, The Journal of chemical physics.

[11]  Jiří Pittner,et al.  Method of moments for the continuous transition between the Brillouin–Wigner-type and Rayleigh–Schrödinger-type multireference coupled cluster theories , 2009 .

[12]  Karol Kowalski,et al.  Generating functionals based formulation of the method of moments of coupled cluster equations. , 2009, The Journal of chemical physics.

[13]  Kiran Bhaskaran-Nair,et al.  Multireference state-specific Mukherjee's coupled cluster method with noniterative triexcitations. , 2008, The Journal of chemical physics.

[14]  Michael Hanrath,et al.  An exponential multi-reference wavefunction ansatz: connectivity analysis and application to N2 , 2008 .

[15]  Andrew C. Simmonett,et al.  Triple excitations in state-specific multireference coupled cluster theory: application of Mk-MRCCSDT and Mk-MRCCSDT-n methods to model systems. , 2008, The Journal of chemical physics.

[16]  J. Pittner,et al.  Multireference Brillouin-Wigner coupled cluster method with singles, doubles, and triples: efficient implementation and comparison with approximate approaches. , 2008, The Journal of chemical physics.

[17]  Andrew G. Taube,et al.  Improving upon CCSD(T): LambdaCCSD(T). I. Potential energy surfaces. , 2008, Journal of Chemical Physics.

[18]  Andrew G. Taube,et al.  Improving upon CCSD(T): LambdaCCSD(T). II. Stationary formulation and derivatives. , 2008, The Journal of chemical physics.

[19]  Francesco A Evangelista,et al.  Coupling term derivation and general implementation of state-specific multireference coupled cluster theories. , 2007, The Journal of chemical physics.

[20]  J. Pittner,et al.  Multireference Brillouin-Wigner coupled clusters method with noniterative perturbative connected triples. , 2006, The Journal of chemical physics.

[21]  Michael Hanrath,et al.  Initial applications of an exponential multi-reference wavefunction ansatz , 2006 .

[22]  Josef Paldus,et al.  General-model-space state-universal coupled-cluster methods for excited states: diagonal noniterative triple corrections. , 2006, The Journal of chemical physics.

[23]  Piotr Piecuch,et al.  Renormalized coupled-cluster methods exploiting left eigenstates of the similarity-transformed Hamiltonian. , 2005, The Journal of chemical physics.

[24]  Mihály Kállay,et al.  Approximate treatment of higher excitations in coupled-cluster theory. , 2005, The Journal of chemical physics.

[25]  Michael Hanrath,et al.  An exponential multireference wave-function Ansatz. , 2005, The Journal of chemical physics.

[26]  J. Paldus,et al.  Multi-reference Brillouin–Wigner coupled-cluster method with a general model space , 2005 .

[27]  Mihály Kállay,et al.  Coupled-cluster methods including noniterative corrections for quadruple excitations. , 2005, The Journal of chemical physics.

[28]  J. Pittner,et al.  Towards the multireference Brillouin-Wigner coupled-clusters method with iterative connected triples: MR BWCCSDT-alpha approximation. , 2005, The Journal of chemical physics.

[29]  Karol Kowalski,et al.  Extensive generalization of renormalized coupled-cluster methods. , 2005, The Journal of chemical physics.

[30]  Karol Kowalski,et al.  New classes of non-iterative energy corrections to multi-reference coupled-cluster energies , 2004 .

[31]  J. Paldus,et al.  Performance of the general-model-space state-universal coupled-cluster method. , 2004, The Journal of chemical physics.

[32]  Josef Paldus,et al.  General-model-space state-universal coupled-cluster theory: Connectivity conditions and explicit equations , 2003 .

[33]  Josef Paldus,et al.  N-reference, M-state coupled-cluster method: Merging the state-universal and reduced multireference coupled-cluster theories , 2003 .

[34]  Josef Paldus,et al.  The general-model-space state-universal coupled-cluster method exemplified by the LiH molecule , 2003 .

[35]  Jiří Pittner,et al.  Continuous transition between Brillouin-Wigner and Rayleigh-Schrödinger perturbation theory, generalized Bloch equation, and Hilbert space multireference coupled cluster , 2003 .

[36]  T. Voorhis,et al.  Quadratic coupled-cluster doubles: Implementation and assessment of perfect pairing optimized geometries , 2002 .

[37]  Martin Head-Gordon,et al.  A perturbative correction to the quadratic coupled-cluster doubles method for higher excitations , 2002 .

[38]  So Hirata,et al.  Erratum: “Perturbative corrections to coupled-cluster and equation-of-motion coupled-cluster energies: A determinantal analysis” [J. Chem. Phys. 114, 3919 (2001)] , 2001 .

[39]  Karol Kowalski,et al.  Extension of the method of moments of coupled-cluster equations to a multireference wave operator formalism ☆ , 2001 .

[40]  Martin Head-Gordon,et al.  A second-order perturbative correction to the coupled-cluster singles and doubles method: CCSD(2) , 2001 .

[41]  So Hirata,et al.  Perturbative corrections to coupled-cluster and equation-of-motion coupled-cluster energies: A determinantal analysis , 2001 .

[42]  P. Piecuch,et al.  The state-universal multi-reference coupled-cluster theory with perturbative description of core-virtual excitations , 2001 .

[43]  Martin Head-Gordon,et al.  The quadratic coupled cluster doubles model , 2000 .

[44]  Anna I. Krylov,et al.  Second order perturbation corrections to singles and doubles coupled-cluster methods: General theory and application to the valence optimized doubles model , 2000 .

[45]  J. Paldus,et al.  Direct iterative solution of the generalized Bloch equation. II. A general formalism for many-electron systems , 2000 .

[46]  J. Paldus,et al.  Direct iterative solution of the generalized Bloch equation. III. Application to H2-cluster models , 2000 .

[47]  J. Paldus,et al.  Direct iterative solution of the generalized Bloch equation. IV. Application to H2, LiH, BeH, and CH2 , 2000 .

[48]  Karol Kowalski,et al.  The method of moments of coupled-cluster equations and the renormalized CCSD[T], CCSD(T), CCSD(TQ), and CCSDT(Q) approaches , 2000 .

[49]  Martin Head-Gordon,et al.  A second-order correction to singles and doubles coupled-cluster methods based on a perturbative expansion of a similarity-transformed Hamiltonian , 2000 .

[50]  Karol Kowalski,et al.  Complete set of solutions of multireference coupled-cluster equations: The state-universal formalism , 2000 .

[51]  Petr Nachtigall,et al.  Assessment of the single-root multireference Brillouin–Wigner coupled- cluster method: Test calculations on CH2, SiH2, and twisted ethylene , 1999 .

[52]  Uttam Sinha Mahapatra,et al.  A size-consistent state-specific multireference coupled cluster theory: Formal developments and molecular applications , 1999 .

[53]  Rodney J. Bartlett,et al.  Sixth-order energy corrections with converged coupled cluster singles and doubles amplitudes , 1998 .

[54]  Rodney J. Bartlett,et al.  Noniterative energy corrections through fifth-order to the coupled cluster singles and doubles method , 1998 .

[55]  J. Stanton Why CCSD(T) works: a different perspective , 1997 .

[56]  John F. Stanton,et al.  A simple correction to final state energies of doublet radicals described by equation-of-motion coupled cluster theory in the singles and doubles approximation , 1997 .

[57]  John F. Stanton,et al.  Perturbative treatment of the similarity transformed Hamiltonian in equation‐of‐motion coupled‐cluster approximations , 1995 .

[58]  Rodney J. Bartlett,et al.  Alternative ansätze in single reference coupled-cluster theory. III. A critical analysis of different methods , 1995 .

[59]  Rodney J. Bartlett,et al.  A multireference coupled‐cluster study of the ground state and lowest excited states of cyclobutadiene , 1994 .

[60]  S. Pal,et al.  Nonlinear molecular properties using biorthogonal response approach , 1994 .

[61]  Piecuch,et al.  Application of Hilbert-space coupled-cluster theory to simple (H2)2 model systems: Planar models. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[62]  U. Kaldor,et al.  Degeneracy breaking in the Hilbert‐space coupled cluster method , 1993 .

[63]  U. Kaldor,et al.  Hilbert space coupled-cluster method in an incomplete model space , 1992 .

[64]  Rodney J. Bartlett,et al.  Hilbert space multireference coupled-cluster methods. II: A model study on H8 , 1992 .

[65]  R. Bartlett,et al.  Coupled‐cluster method for an incomplete model space , 1992 .

[66]  Rodney J. Bartlett,et al.  Hilbert space multireference coupled-cluster methods. I: The single and double excitation model , 1991 .

[67]  Rodney J. Bartlett,et al.  The multireference coupled‐cluster method in Hilbert space: An incomplete model space application to the LiH molecule , 1991 .

[68]  Rodney J. Bartlett,et al.  The multi-reference Hilbert space coupled-cluster study of the Li2 molecule. Application in a complete model space , 1991 .

[69]  Rodney J. Bartlett,et al.  A Hilbert space multi-reference coupled-cluster study of the H4 model system , 1991 .

[70]  Henrik Koch,et al.  Coupled cluster response functions , 1990 .

[71]  Raymond F. Bishop,et al.  Correlations in Extended Systems: A Microscopic Multilocal Method for Describing Both Local and Global Properties , 1990 .

[72]  R. Bartlett,et al.  A multireference coupled‐cluster method for special classes of incomplete model spaces , 1989 .

[73]  M. Head‐Gordon,et al.  A fifth-order perturbation comparison of electron correlation theories , 1989 .

[74]  Rodney J. Bartlett,et al.  Analytic energy derivatives in many‐body methods. I. First derivatives , 1989 .

[75]  Leszek Meissner,et al.  A coupled‐cluster method for quasidegenerate states , 1988 .

[76]  Josef Paldus,et al.  Spin‐adapted multireference coupled‐cluster approach: Linear approximation for two closed‐shell‐type reference configurations , 1988 .

[77]  Bishop,et al.  Extended coupled-cluster method. I. Generalized coherent bosonization as a mapping of quantum theory into classical Hamiltonian mechanics. , 1987, Physical review. A, General physics.

[78]  Pál Bivariational coupled-cluster approach for the study of static electronic properties. , 1986, Physical review. A, General physics.

[79]  Ghose,et al.  Analysis of coupled-cluster methods for higher-order static properties. , 1986, Physical review. A, Atomic, molecular, and optical physics.

[80]  P. Durand,et al.  Direct determination of effective Hamiltonians by wave-operator methods. I. General formalism , 1983 .

[81]  J. Arponen,et al.  Variational principles and linked-cluster exp S expansions for static and dynamic many-body problems , 1983 .

[82]  H. Monkhorst,et al.  Coupled-cluster method for multideterminantal reference states , 1981 .

[83]  Carlos E. Soliverez,et al.  General theory of effective Hamiltonians , 1981 .

[84]  H. Weidenmüller,et al.  Perturbation theory for the effective interaction in nuclei , 1973 .

[85]  H. Weidenmüller,et al.  The effective interaction in nuclei and its perturbation expansion: An algebraic approach , 1972 .

[86]  C. Bloch,et al.  Sur la théorie des perturbations des états liés , 1958 .

[87]  Liguo Kong,et al.  Connection between a few Jeziorski‐Monkhorst ansatz‐based methods , 2009 .

[88]  J. Paldus,et al.  Size extensivity of a general-model-space state-universal coupled-cluster method , 2004 .

[89]  Erkki J. Brändas,et al.  Advanced Topics in Theoretical Chemical Physics , 2003 .

[90]  P. Piecuch,et al.  Complete set of solutions of the generalized Bloch equation , 2000 .

[91]  Gg Balint-Kurti,et al.  Lecture notes in Chemistry , 2000 .

[92]  R. Bartlett,et al.  EOMXCC: A New Coupled-Cluster Method for Electronic Excited States , 1999 .

[93]  John F. Stanton,et al.  INVESTIGATION OF AN ASYMMETRIC TRIPLE-EXCITATION CORRECTION FOR COUPLED-CLUSTER ENERGIES , 1998 .

[94]  Uttam Sinha Mahapatra,et al.  State-Specific Multi-Reference Coupled Cluster Formulations: Two Paradigms , 1998 .

[95]  Ivan Hubač,et al.  Multireference Brillouin-Wigner Coupled-Cluster Theory. Single-root approach. , 1998 .

[96]  E. Steinborn,et al.  A new iterative method for solving the time-independent Schrdinger equation based on the generalized Bloch equation. I. Boson systems: The quartic anharmonic oscillator , 1997 .

[97]  D. Herschbach,et al.  New methods in quantum theory , 1996 .

[98]  Josef Paldus,et al.  Orthogonally spin-adapted multi-reference Hilbert space coupled-cluster formalism: diagrammatic formulation , 1992 .

[99]  R. Bartlett,et al.  A general model-space coupled-cluster method using a Hilbert-space approach , 1990 .