Compositional characterization of observable program properties

Dans cet article nous modelisons a la fois les comportements des programmes et les abstractions entre eux comme des fonctions qui generalisent les interpretations abstraites en tirant profit de l'ordre naturel des proprietes des programmes. Cette generalisation offre un cadre dans lequel la correction (surete) et la completude des interpretations abstraites resultent naturellement de cet ordre. De plus, elle autorise le raffinement modulaire et pas a pas: etant donne le comportement d'un programme, sa caracterisation, qui est une semantique denotationnelle complete et aussi correcte que possible, peut etre determinee par composition

[1]  Bernhard Steffen,et al.  Optimal Run Time Optimization Proved by a New Look at Abstract Interpretation , 1987, TAPSOFT, Vol.1.

[2]  Patrick Cousot,et al.  Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints , 1977, POPL.

[3]  C. Barry Jay,et al.  Partial Functions, Ordered Categories, Limits and Cartesian Closure , 1991 .

[4]  Chris Hankin,et al.  The theory of strictness analysis for higher order functions , 1985, Programs as Data Objects.

[5]  Patrick Cousot,et al.  Automatic synthesis of optimal invariant assertions: Mathematical foundations , 1977, Artificial Intelligence and Programming Languages.

[6]  Chris Hankin,et al.  Abstract Interpretation of Declarative Languages , 1987 .

[7]  Patrick Cousot,et al.  Automatic synthesis of optimal invariant assertions: Mathematical foundations , 1977 .

[8]  M. Barr,et al.  Toposes, Triples and Theories , 1984 .

[9]  C. B. Jay Applications of Categories in Computer Science: Modelling reduction in confluent categories , 1992 .

[10]  Tony Hoare,et al.  Data Refinement in a Categorical Setting , 1987 .

[11]  Gordon D. Plotkin,et al.  The category-theoretic solution of recursive domain equations , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[12]  Chris Hankin,et al.  Strictness Analysis for Higher-Order Functions , 1986, Sci. Comput. Program..

[13]  R. Street,et al.  Review of the elements of 2-categories , 1974 .

[14]  Bernhard Steffen Optimal Data Flow Analysis via Observational Equivalence , 1989, MFCS.

[15]  Patrick Cousot,et al.  Systematic design of program analysis frameworks , 1979, POPL.

[16]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[17]  Neil D. Jones,et al.  A relational framework for abstract interpretation , 1985, Programs as Data Objects.