Light trapping with titanium dioxide diffraction gratings fabricated by nanoimprinting

Dielectric scattering structures are a promising way of trapping light in solar cells. Titanium dioxide is a particularly attractive candidate material because of its high refractive index and ability to be deposited on a finished solar cell. Here, we present an experimental demonstration of photocurrent enhancement in thin film recrystallised silicon solar cells using TiO2 pillar arrays fabricated on the rear of the cells using nanoimprint lithography. A short circuit current enhancement of 19% is measured experimentally, and excellent agreement with numerical simulations is obtained. We show numerically that by replacing the Ag capping present on the cells with a detached rear Ag back reflector, the enhancement could reach 37%. Copyright © 2012 John Wiley & Sons, Ltd.

[1]  Martin A. Green,et al.  Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons , 2010 .

[2]  Alberto Salleo,et al.  Light trapping in thin-film silicon solar cells with submicron surface texture. , 2009, Optics express.

[3]  K. Catchpole,et al.  Plasmonic solar cells. , 2008, Optics express.

[4]  K. Catchpole,et al.  Nanoimprinted Tio2 sol–gel passivating diffraction gratings for solar cell applications , 2012 .

[5]  Peter Bermel,et al.  Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. , 2007, Optics express.

[6]  S. Varlamov,et al.  5% Efficient evaporated solid‐phase crystallised polycrystalline silicon thin‐film solar cells , 2009 .

[7]  K. Catchpole,et al.  Resonant enhancement of dielectric and metal nanoparticle arrays for light trapping in solar cells. , 2012, Optics express.

[8]  Helmut Stiebig,et al.  Silicon thin‐film solar cells with rectangular‐shaped grating couplers , 2006 .

[9]  J. Michel,et al.  Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells , 2007, IEEE Transactions on Electron Devices.

[10]  Dayu Zhou,et al.  Photonic crystal enhanced light-trapping in thin film solar cells , 2008 .

[11]  M. Werner,et al.  Thin Film Morphology, Growth and Defect Structure of e-Beam Deposited Silicon on Glass , 2009 .

[12]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[13]  Helmut Stiebig,et al.  Thin-film silicon solar cells with efficient periodic light trapping texture , 2007 .

[14]  Andrew Blakers,et al.  RIE‐induced carrier lifetime degradation , 2010 .

[15]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[16]  F. Lederer,et al.  Light absorption in textured thin film silicon solar cells: A simple scalar scattering approach versus rigorous simulation , 2011 .

[17]  Yasha Yi,et al.  Efficiency enhancement in Si solar cells by textured photonic crystal back reflector , 2006 .

[18]  Dirk N. Weiss,et al.  Nanoimprinting for diffractive light trapping in solar cells , 2010 .

[19]  Helmut Stiebig,et al.  Optical properties of thin‐film silicon solar cells with grating couplers , 2006 .

[20]  Benjamin G. Lee,et al.  Diffractive light trapping in crystal-silicon films: experiment and electromagnetic modeling. , 2011, Applied optics.

[21]  M. Zeman,et al.  Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. , 2012, Nano letters.

[22]  M. Green,et al.  Optical properties of intrinsic silicon at 300 K , 1995 .