Review—Organic Materials for Thermoelectric Energy Generation

L.M.C and B.C.S. acknowledge the Materials Research Institute and Queen Mary University of London for financial support. M.J.C. would like to thank the EPSRC funded (EP/N506553/1) College of Engineering Doctoral Training Partnership at Swansea University.

[1]  W.G.J.H.M. van Sark,et al.  Feasibility of photovoltaic – Thermoelectric hybrid modules , 2011 .

[2]  Andres Osvet,et al.  Qualitative analysis of bulk-heterojunction solar cells without device fabrication: an elegant and contactless method. , 2014, Journal of the American Chemical Society.

[3]  Daoben Zhu,et al.  n-Type thermoelectric materials based on CuTCNQ nanocrystals and CuTCNQ nanorod arrays , 2015 .

[4]  Alan J. Heeger,et al.  Soliton excitations in polyacetylene , 1980 .

[5]  H. Kataura,et al.  Optical and Conductive Characteristics of Metallic Single-Wall Carbon Nanotubes with Three Basic Colors; Cyan, Magenta, and Yellow , 2008 .

[6]  K. Novoselov,et al.  Engineering electrical properties of graphene: chemical approaches , 2015 .

[7]  G. Bazan,et al.  Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors† †Electronic supplementary information (ESI) available: Materials and experimental methods, details of characterization experiments (NMR, EPR, XPS, UV/VIS/NIR, FTIR). See DOI: 10.1039/c5sc04217h , 2015, Chemical science.

[8]  Zhenan Bao,et al.  Ultrahigh electrical conductivity in solution-sheared polymeric transparent films , 2015, Proceedings of the National Academy of Sciences.

[9]  H. Kataura,et al.  Giant Seebeck coefficient in semiconducting single-wall carbon nanotube film , 2014, 1401.7469.

[10]  C. Frisbie,et al.  High Carrier Density and Metallic Conductivity in Poly(3‐hexylthiophene) Achieved by Electrostatic Charge Injection , 2006 .

[11]  Furkan H. Isikgor,et al.  Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices , 2015, Journal of Materials Science: Materials in Electronics.

[12]  Qingjie Zhang,et al.  Synthesis and thermoelectric properties of hydrochloric acid-doped polyaniline , 2010 .

[13]  Kikuchi,et al.  Electronic structure of alkali metal doped C60 derived from thermoelectric power measurements. , 1992, Physical review letters.

[14]  M. Yanagida,et al.  Lead Halide Perovskite Photovoltaic as a Model p-i-n Diode. , 2016, Accounts of chemical research.

[15]  Baker Mohammad,et al.  Characterization of a Graphene-Based Thermoelectric Generator Using a Cost-Effective Fabrication Process , 2015 .

[16]  H. Anno,et al.  Novel Hybrid Organic Thermoelectric Materials:Three‐Component Hybrid Films Consisting of a Nanoparticle Polymer Complex, Carbon Nanotubes, and Vinyl Polymer , 2015, Advanced materials.

[17]  W. R. Salaneck,et al.  Interfacial chemistry of Alq3 and LiF with reactive metals , 2001 .

[18]  Heng Wang,et al.  Electrical and thermal properties of carbon nanotube bulk materials: Experimental studies for the 328 – 958 K temperature range , 2007 .

[19]  Jianyong Ouyang,et al.  "Secondary doping" methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices , 2013, Displays.

[20]  C. K. Chiang,et al.  Electrical Conductivity in Doped Polyacetylene. , 1977 .

[21]  S. Roth,et al.  Electrical conductivity of iodine doped oriented polyacetylene , 1991 .

[22]  Julian M. Allwood,et al.  Theoretical efficiency limits for energy conversion devices , 2010 .

[23]  Guangming Chen,et al.  Poly(3,4-ethylenedioxythiophene)/graphene/carbon nanotube ternary composites with improved thermoelectric performance , 2016 .

[24]  S. Luo,et al.  Grain Boundary Energy and Grain Size Dependences of Thermal Conductivity of Polycrystalline Graphene , 2014 .

[25]  Victor P. Mammana,et al.  Properties , 2020, Knowledge and the Philosophy of Number.

[26]  Moon Jeong Park,et al.  High-Conductivity Two-Dimensional Polyaniline Nanosheets Developed on Ice Surfaces. , 2015, Angewandte Chemie.

[27]  Kevin C. See,et al.  Water-processable polymer-nanocrystal hybrids for thermoelectrics. , 2010, Nano letters.

[28]  Uli Lemmer,et al.  Organic Semiconductors for Thermoelectric Applications , 2010 .

[29]  W. Marsden I and J , 2012 .

[30]  Y. Tokura,et al.  Ink-jet printing of organic metal electrodes using charge-transfer compounds , 2006 .

[31]  E. Poverenov,et al.  Unusual doping of donor-acceptor-type conjugated polymers using lewis acids. , 2014, Journal of the American Chemical Society.

[32]  Thomas H. Reilly,et al.  A Self‐Doping, O2‐Stable, n‐Type Interfacial Layer for Organic Electronics , 2012 .

[33]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[34]  Effect of grain boundaries on thermal transport in graphene , 2012, 1210.8027.

[35]  R. Friend,et al.  Intrinsic and Extrinsic Stability of Formamidinium Lead Bromide Perovskite Solar Cells Yielding High Photovoltage. , 2016, Nano letters.

[36]  J. Stejskal,et al.  Polyaniline prepared in the presence of various acids: a conductivity study , 2004 .

[37]  Nelson E. Coates,et al.  Thermoelectric power factor optimization in PEDOT:PSS tellurium nanowire hybrid composites. , 2013, Physical chemistry chemical physics : PCCP.

[38]  Robert P. H. Chang,et al.  Lead-free solid-state organic–inorganic halide perovskite solar cells , 2014, Nature Photonics.

[39]  S. Roth,et al.  Solitons in polyacetylene , 1987 .

[40]  J. Brédas,et al.  Polarons, bipolarons, and solitons in conducting polymers , 1985 .

[41]  J. Reynolds,et al.  Poly(3,4‐ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future , 2000 .

[42]  Daoben Zhu,et al.  Thermoelectric energy from flexible P3HT films doped with a ferric salt of triflimide anions , 2012 .

[43]  Qingshuo Wei,et al.  Recent Progress on PEDOT-Based Thermoelectric Materials , 2015, Materials.

[44]  X. Crispin,et al.  Optimization of the thermoelectric figure of merit in the conducting polymer poly(3,4-ethylenedioxythiophene). , 2011, Nature materials.

[45]  C. Goupil,et al.  Thermoelectric properties of perovskites: Sign change of the Seebeck coefficient and high temperature properties , 2007 .

[46]  N. Koch,et al.  Doping of organic semiconductors: impact of dopant strength and electronic coupling. , 2013, Angewandte Chemie.

[47]  William R. Salaneck,et al.  The effects of solvents on the morphology and sheet resistance in poly(3,4-ethylenedioxythiophene)–polystyrenesulfonic acid (PEDOT–PSS) films , 2003 .

[48]  H. Sirringhaus,et al.  Modulated Thermoelectric Properties of Organic Semiconductors Using Field‐Effect Transistors , 2015 .

[49]  W. Xu,et al.  Organic Thermoelectric Materials: Emerging Green Energy Materials Converting Heat to Electricity Directly and Efficiently , 2014, Advanced materials.

[50]  O. Kanoun,et al.  Piezoresistive characterization of multi-walled carbon nanotube-epoxy based flexible strain sensitive films by impedance spectroscopy , 2016 .

[51]  Rachel A. Segalman,et al.  Organic thermoelectric materials for energy harvesting and temperature control , 2016, Nature Reviews Materials.

[52]  C. Adachi,et al.  Thermoelectric properties of n-type C60 thin films and their application in organic thermovoltaic devices , 2011 .

[53]  Mark A Ratner,et al.  Rylene and Related Diimides for Organic Electronics , 2011, Advanced materials.

[54]  M. Salamon,et al.  Thermal conductivity of C60 and C70 crystals , 1993 .

[55]  Alberto Salleo,et al.  High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor , 2016, Nature Communications.

[56]  Y. Coppel,et al.  Nickel ethylene tetrathiolate polymers as nanoparticles: a new synthesis for future applications? , 2013, Journal of Nanoparticle Research.

[57]  Z. Bao,et al.  Mechanistic study on the solution-phase n-doping of 1,3-dimethyl-2-aryl-2,3-dihydro-1H-benzoimidazole derivatives. , 2013, Journal of the American Chemical Society.

[58]  A. B. Kaiser,et al.  Thermoelectric power and conductivity of iodine‐doped ‘‘new’’ polyacetylene , 1991 .

[59]  H. Sirringhaus,et al.  Field-effect modulated Seebeck coefficient measurements in an organic polymer using a microfabricated on-chip architecture , 2014 .

[60]  M. Chabinyc,et al.  Solution-Processable Molecular and Polymer Semiconductors for Thermoelectrics , 2016 .

[61]  C. Hawker,et al.  Power Factor Enhancement in Solution‐Processed Organic n‐Type Thermoelectrics Through Molecular Design , 2014, Advanced materials.

[62]  D. Emin,et al.  Thermoelectric properties of conducting polymers : The case of poly(3-hexylthiophene) , 2010 .

[63]  S. LeBlanc Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications , 2014 .

[64]  X. Crispin,et al.  Towards polymer-based organic thermoelectric generators , 2012 .

[65]  Daoben Zhu,et al.  Toward High Performance n-Type Thermoelectric Materials by Rational Modification of BDPPV Backbones. , 2015, Journal of the American Chemical Society.

[66]  M. Chabinyc,et al.  Anisotropies and the thermoelectric properties of semiconducting polymers , 2017 .

[67]  William R. Salaneck,et al.  The electronic structure of poly(3,4-ethylene-dioxythiophene): studied by XPS and UPS , 1997 .

[68]  M. Freund,et al.  Self-Doped Conducting Polymers , 2007 .

[69]  Yuanyuan Yang,et al.  Enhanced conductivity of polyaniline by conjugated crosslinking. , 2011, Macromolecular rapid communications.

[70]  Donghe Du,et al.  PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells. , 2016, ACS applied materials & interfaces.

[71]  H. Sirringhaus,et al.  Thieno[3,2‐b]thiophene Flanked Isoindigo Polymers for High Performance Ambipolar OFET Applications , 2014 .

[72]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[73]  Y. Kim,et al.  Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post‐Treatment for ITO‐Free Organic Solar Cells , 2011 .

[74]  Jae Hoon Jung,et al.  Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents , 2002 .

[75]  Giulia Galli,et al.  Perovskites for Solar Thermoelectric Applications: A First Principle Study of CH3NH3AI3 (A = Pb and Sn) , 2014 .

[76]  Konrad Wojciechowski,et al.  A one-step low temperature processing route for organolead halide perovskite solar cells. , 2013, Chemical communications.

[77]  David Beljonne,et al.  Approaching disorder-free transport in high-mobility conjugated polymers , 2014, Nature.

[78]  Jingkun Xu,et al.  Effective Approaches to Improve the Electrical Conductivity of PEDOT:PSS: A Review , 2015 .

[79]  B. Saidani,et al.  Electrochemical synthesis of polypyrrole films doped by ferrocyanide ions onto iron substrate: Application in the electroanalytical determination of uric acid , 2014 .

[80]  A. Heeger,et al.  Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x , 1977 .

[81]  Sambhu Bhadra,et al.  Electrochemical synthesis of polyaniline and its comparison with chemically synthesized polyaniline , 2007 .

[82]  A. J. Muller,et al.  Conducting films of C60 and C70 by alkali-metal doping , 1991, Nature.

[83]  Kwang-Suk Jang,et al.  Enhancement of Thermoelectric Properties of PEDOT:PSS and Tellurium-PEDOT:PSS Hybrid Composites by Simple Chemical Treatment , 2015, Scientific Reports.

[84]  N. T. Kemp,et al.  Thermoelectric power and conductivity of different types of polypyrrole , 1999 .

[85]  Vladimir D. Blank,et al.  C60‐doping of nanostructured Bi–Sb–Te thermoelectrics , 2011 .

[86]  Olfa Kanoun,et al.  Electrical properties of multi-walled carbon nanotubes/PEDOT:PSS nanocomposites thin films under temperature and humidity effects , 2016 .

[87]  J. Meiss,et al.  In-situ conductivity and Seebeck measurements of highly efficient n-dopants in fullerene C60 , 2012 .

[88]  S. Chattopadhyay,et al.  Polymer based graphene/titanium dioxide nanocomposite (GTNC): an emerging and efficient thermoelectric material. , 2015, Dalton transactions.

[89]  I. Salzmann,et al.  Doping in organic semiconductors , 2019, Handbook of Organic Materials for Electronic and Photonic Devices.

[90]  J. Behrends,et al.  p‐Type Doping of Poly(3‐hexylthiophene) with the Strong Lewis Acid Tris(pentafluorophenyl)borane , 2016 .

[91]  Huiliang Wang,et al.  Highly conductive free standing polypyrrole films prepared by freezing interfacial polymerization. , 2012, Chemical communications.

[92]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[93]  K. Suemori,et al.  Increase in thermoelectric power factor of carbon-nanotube films after addition of polystyrene , 2016 .

[94]  Yongfang Li,et al.  A 3D star-shaped non-fullerene acceptor for solution-processed organic solar cells with a high open-circuit voltage of 1.18 V. , 2012, Chemical communications.

[95]  Guangming Chen,et al.  Enhanced thermoelectric performance by self-assembled layered morphology of polypyrrole nanowire/single-walled carbon nanotube composites , 2016 .

[96]  Assunta Marrocchi,et al.  Poly(3-hexylthiophene): synthetic methodologies and properties in bulk heterojunction solar cells , 2012 .

[97]  N. Koch,et al.  Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules. , 2016, Accounts of chemical research.

[98]  Daoben Zhu,et al.  Organic Thermoelectric Materials and Devices Based on p‐ and n‐Type Poly(metal 1,1,2,2‐ethenetetrathiolate)s , 2012, Advanced materials.

[99]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[100]  Jingkun Xu,et al.  Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: A mini-review , 2012 .

[101]  T. Nishi,et al.  Doping Effect of Tetrathianaphthacene Molecule in Organic Semiconductors on Their Interfacial Electronic Structures Studied by UV Photoemission Spectroscopy , 2005 .

[102]  Davor Pavuna,et al.  Tuning of the Thermoelectric Figure of Merit of CH3NH3MI3 (M=Pb,Sn) Photovoltaic Perovskites , 2015, 1505.07389.

[103]  F. S. Kim,et al.  Effects of one- and two-dimensional carbon hybridization of PEDOT:PSS on the power factor of polymer thermoelectric energy conversion devices , 2015 .

[104]  Shota Kuwahara,et al.  Quantitative analysis of isolated single-wall carbon nanotubes with their molar absorbance coefficients , 2014 .

[105]  Yuejin Zhu,et al.  Dip-coating of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) anodes for efficient polymer solar cells , 2015 .

[106]  C. Hawker,et al.  Solubility‐Limited Extrinsic n‐Type Doping of a High Electron Mobility Polymer for Thermoelectric Applications , 2014, Advanced materials.

[107]  A. Benamara,et al.  N doping of polyacetylene , 1991 .

[108]  P. Vadgama,et al.  Polypyrrole-based conducting polymers and interactions with biological tissues , 2006, Journal of The Royal Society Interface.

[109]  N. S. Sariciftci,et al.  Spectroelectrochemical and Photovoltaic Characterization of a Solution-Processable n-and-p Type Dopable Pyrrole-Bearing Conjugated Polymer , 2010 .

[110]  Shiren Wang,et al.  Enhancing thermoelectric properties of organic composites through hierarchical nanostructures , 2013, Scientific Reports.

[111]  Yong-JinKim,et al.  Engineering electrical properties of graphene : chemical approaches , 2015 .

[112]  C. Tang,et al.  Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode , 1997 .

[113]  S. Armes Optimum reaction conditions for the polymerization of pyrrole by iron(III) chloride in aqueous solution , 1987 .

[114]  Clemens Forman,et al.  Estimating the global waste heat potential , 2016 .

[115]  Modulation of thermoelectric power of individual carbon nanotubes. , 2003, Physical review letters.

[116]  Song Guo,et al.  n‐Doping of Organic Electronic Materials using Air‐Stable Organometallics , 2012, Advanced materials.

[117]  Y. Qi,et al.  Solution doping of organic semiconductors using air-stable n-dopants , 2012 .

[118]  F. Disalvo,et al.  Thermoelectric cooling and power generation , 1999, Science.

[119]  R. Chang,et al.  Improving the performance of ITO thin films by coating PEDOT:PSS , 2014 .

[120]  Stephen R. Forrest,et al.  Lithium doping of semiconducting organic charge transport materials , 2001 .

[121]  J. Schrieffer,et al.  Soliton dynamics in polyacetylene. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[122]  S. Darling,et al.  Graphene in perovskite solar cells: device design, characterization and implementation , 2016 .

[123]  Michael A. Wilson,et al.  Emission FTIR study of C60 thermal stability and oxidation , 1991 .

[124]  Oleksandr Voznyy,et al.  Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals. , 2016, The journal of physical chemistry letters.

[125]  D. Scanlon,et al.  Beyond methylammonium lead iodide: prospects for the emergent field of ns2 containing solar absorbers. , 2016, Chemical communications.

[126]  Jung-Hyun Kim,et al.  Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems , 2014, Nano Research.

[127]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[128]  Zhiping Xu,et al.  Characterizing phonon thermal conduction in polycrystalline graphene , 2013, 1308.5989.