Density Approach in Modeling Successive Defaults

We apply the density framework developed in [N. El Karoui, M. Jeanblanc, and Y. Jiao, Stochastic Process. Appl., 120 (2010), pp. 1011--1032] to the modeling of successive multiple defaults. Under the hypothesis of existence of the joint density of the ordered default times with respect to a reference filtration, we present general pricing results and establish links with the classical intensity approach; in particular, we emphasize the impact of default events at successive default times. Explicit models, constructed using the methods of change of probability measure or dynamic copula, are proposed.

[1]  Igor Halperin,et al.  BSLP: Markovian Bivariate Spread-Loss Model for Portfolio Credit Derivatives , 2008, 0901.3398.

[2]  INFORMATIONALLY DYNAMIZED GAUSSIAN COPULA , 2013 .

[3]  Philipp J. Schönbucher,et al.  Background filtrations and canonical loss processes for top-down models of portfolio credit risk , 2009, Finance Stochastics.

[4]  A. Cousin Dynamic hedging of synthetic CDO tranches , 2011 .

[5]  Damiano Brigo,et al.  Calibration of CDO Tranches with the Dynamical Generalized-Poisson Loss Model , 2007 .

[6]  Conditional Default Probability and Density , 2014 .

[7]  Xiaowei Ding,et al.  A Top-Down Approach to Multiname Credit , 2011, Oper. Res..

[8]  Modelling default contagion using multivariate phase-type distributions , 2011 .

[9]  Rama Cont,et al.  Recovering Portfolio Default Intensities Implied by CDO Quotes , 2013 .

[10]  David Lando,et al.  On cox processes and credit risky securities , 1998 .

[11]  Monique Jeanblanc,et al.  What happens after a default: The conditional density approach , 2009, 0905.0559.

[12]  Jean-Paul Laurent,et al.  Hedging default risks of CDOs in Markovian contagion models , 2011 .

[13]  A New Framework for Dynamic Credit Portfolio Loss Modelling , 2008 .

[14]  Dynamic hedging of synthetic CDO tranches with spread risk and default contagion , 2010 .

[15]  Damir Filipović,et al.  DYNAMIC CDO TERM STRUCTURE MODELING , 2010 .

[16]  Dawn Hunter Dependent defaults in models of portfolio credit risk , 2003 .

[17]  Kay Giesecke,et al.  Affine Point Processes and Portfolio Credit Risk , 2010, SIAM J. Financial Math..

[18]  Kay Giesecke,et al.  A Top-Down Approach to Multi-Name Credit , 2009 .

[19]  A. Dassios,et al.  A dynamic contagion process , 2011, Advances in Applied Probability.

[20]  T. Bielecki,et al.  Up and down credit risk , 2010 .