Bifurcation and Chaos in Externally Excited Circular Cylindrical Shells

The nonlinear response of an infinitely long cylindrical shell to a primary excitation of one of its two orthogonal flexural modes is investigated. The method of multiple scales is used to derive four ordinary differential equations describing the amplitudes and phases of the two orthogonal modes by (a) attacking a two-mode discretization of the governing partial differential equations and (b) directly attacking the partial differential equations. The two-mode discretization results in erroneous solutions because it does not account for the effects of the quadratic nonlinearities. The resulting two sets of modulation equations are used to study the equilibrium and dynamic solutions and their stability and hence show the different bifurcations. The response could be a single-mode solution or a two-mode solution. The equilibrium solutions of the two orthogonal third flexural modes undergo a Hopf bifitrcation. A combination ofa shooting technique and Floquet theory is used to calculate limit cycles and their stability. The numerical results indicate the existence of a sequence of period-doubling bifurcations that culminates in chaos, multiple attractors, explosive bifurcations, and crises.