Oxide Dispersion Strengthened Steels for Advanced Blanket Systems

Oxide dispersion strengthened (ODS) steels with nano-scaled oxide particles in high density in ferrite/martensite matrix and on grain boundaries of ultra-fine grains have excellent properties as structural material for fusion blankets, while some issues of fabrication processes are still remaining to be solved. In this overview, material properties of recently developed ODS steels are introduced in comparison to ferritic/martensitic (F/M) steels: 1) mechanical properties, 2) corrosion behavior and 3) radiation tolerance in ODS steels, which are outstandingly superior to the F/M steels. Coupling use of the ODS and F/M steels is effective to expand the design margin of fusion blankets. R&D of dissimilar joining of FM/ODS steels is indispensable.

[1]  H. Serizawa,et al.  Modifications of grain-boundary structure by friction stir welding in the joint of nano-structured oxide dispersion strengthened ferritic steel and reduced activation martensitic steel , 2015 .

[2]  H. Serizawa,et al.  Effects of mechanical force on grain structures of friction stir welded oxide dispersion strengthened ferritic steel , 2014 .

[3]  F. Garner,et al.  Ion-induced swelling of ODS ferritic alloy MA957 tubing to 500 dpa , 2014 .

[4]  Stuart A. Maloy,et al.  Process development for 9Cr nanostructured ferritic alloy (NFA) with high fracture toughness , 2014 .

[5]  T. Nagasaka,et al.  Effects of tool rotation speed on the mechanical properties and microstructure of friction stir welded ODS steel , 2014 .

[6]  S. Hayashi,et al.  Development of 15CrODS ferritic steels for over 1273 K service , 2013 .

[7]  Lance Lewis Snead,et al.  Observation and Possible Mechanism of Irradiation Induced Creep in Ceramics , 2013 .

[8]  A. Steckmeyer,et al.  Tensile anisotropy and creep properties of a Fe–14CrWTi ODS ferritic steel , 2012 .

[9]  I. Kuběna,et al.  Effect of microstructure on low cycle fatigue properties of ODS steels , 2012 .

[10]  Q. Tang,et al.  Hardness and Micro-Texture in Friction Stir Welds of a Nanostructured Oxide Dispersion Strengthened Ferritic Steel , 2012 .

[11]  S. Hayashi,et al.  Grain characteristic and texture evolution in friction stir welds of nanostructured oxide dispersion strengthened ferritic steel , 2011 .

[12]  Mikhail A. Sokolov,et al.  Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket , 2011 .

[13]  N. Muthukumar,et al.  Development of Al added high-Cr ODS steels for fuel cladding of next generation nuclear systems , 2011 .

[14]  S. Hirano,et al.  Microstructure and mechanical properties of friction stir processed ODS ferritic steels , 2011 .

[15]  A. Möslang,et al.  Mechanical and microstructural characterization of electron beam welded reduced activation oxide dispersion strengthened – Eurofer steel , 2011 .

[16]  Yufeng Sun,et al.  Interface microstructure evolution of dissimilar friction stir butt welded F82H steel and SUS304 , 2011 .

[17]  A. Rouffié,et al.  Influence of microstructure on impact properties of 9–18%Cr ODS steels for fusion/fission applications , 2011 .

[18]  A. Kimura,et al.  Effects of Aluminum on the Corrosion Behavior of 16%Cr ODS Ferritic Steels in a Nitric Acid Solution , 2011 .

[19]  J. Kim,et al.  Tensile fracture characteristics of nanostructured ferritic alloy 14YWT , 2010 .

[20]  J. Kim,et al.  High temperature fracture characteristics of a nanostructured ferritic alloy (NFA) , 2010 .

[21]  G. Roma,et al.  Stoichiometric Defects in Silicon Carbide , 2010 .

[22]  A. Kimura,et al.  Superior Radiation Resistance of ODS Ferritic Steels , 2010 .

[23]  J. Kuntz,et al.  HRTEM study of oxide nanoparticles in K3-ODS ferritic steel developed for radiation tolerance , 2009 .

[24]  Wolfgang Hoffelner,et al.  Irradiation creep and microstructural changes in an advanced ODS ferritic steel during helium implantation under stress , 2009 .

[25]  A. Hasegawa,et al.  Effects of helium on ductile-brittle transition behavior of reduced-activation ferritic steels after high-concentration helium implantation at high temperature , 2009 .

[26]  L. Forest,et al.  Some microstructural characterisations in a friction stir welded oxide dispersion strengthened ferritic steel alloy , 2009 .

[27]  A. Kimura,et al.  Statistical evaluation of anisotropic fracture behavior of ODS ferritic steels by using small punch tests , 2009 .

[28]  T. Inoue,et al.  In-pile creep rupture properties of ODS ferritic steel claddings , 2009 .

[29]  A. Kimura,et al.  Stability of Y–Ti complex oxides in Fe–16Cr–0.1Ti ODS ferritic steel before and after heavy-ion irradiation , 2009 .

[30]  T. Kruml,et al.  Low cycle fatigue of Eurofer 97 , 2008 .

[31]  Anton Möslang,et al.  IFMIF: the intense neutron source to qualify materials for fusion reactors , 2008 .

[32]  R. Fonda,et al.  Microstructural evolution ahead of the tool in aluminum friction stir welds , 2008 .

[33]  A. Kohyama,et al.  Creep constitutive equation of dual phase 9Cr-ODS steel , 2008 .

[34]  Y. Katoh,et al.  Handbook of SiC properties for fuel performance modeling , 2007 .

[35]  A. Kohyama,et al.  Particle size effects in mechanically alloyed 9Cr ODS steel powder , 2007 .

[36]  A. Kohyama,et al.  Recent progress in US–Japan collaborative research on ferritic steels R&D , 2007 .

[37]  Ryuta Kasada,et al.  Evaluation of Helium effects on swelling behavior of oxide dispersion strengthened ferritic steels under ion irradiation , 2007 .

[38]  Shigeharu Ukai,et al.  Nano-mesoscopic structural characterization of 9Cr-ODS martensitic steel for improving creep strength , 2007 .

[39]  S. Ukai,et al.  Low cycle fatigue properties of ODS ferritic–martensitic steels at high temperature , 2007 .

[40]  A. Kimura,et al.  High Burnup Fuel Cladding Materials R&D for Advanced Nuclear Systems , 2007 .

[41]  S. Zwaag,et al.  Laser beam welding of an Oxide Dispersion Strengthened super alloy , 2007 .

[42]  S. Ukai,et al.  Nano-mesoscopic structural control in 9CrODS ferritic/martensitic steels , 2006 .

[43]  Shigeharu Ukai,et al.  Improvement of compatibility of advanced ferritic steels with super critical pressurized water toward a higher thermally efficient water-cooled blanket system , 2006 .

[44]  Mikio Enoeda,et al.  Overview of design and R&D of test blankets in Japan , 2006 .

[45]  A. Kimura,et al.  Development of Fuel Clad Materials for High Burn-up Operation of LWR , 2005 .

[46]  John P. Shingledecker,et al.  Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys , 2005 .

[47]  G. R. Odette,et al.  Recent progress on development of vanadium alloys for fusion , 2004 .

[48]  S. Ukai,et al.  Improvement of 9Cr-ODS martensitic steel properties by controlling excess oxygen and titanium contents , 2004 .

[49]  A. Kimura,et al.  Ring-tensile properties of irradiated oxide dispersion strengthened ferritic/martensitic steel claddings , 2004 .

[50]  A. Kimura,et al.  Corrosion properties of oxide dispersion strengthened steels in super-critical water environment , 2004 .

[51]  R. Fonda,et al.  Development of grain structure during friction stir welding , 2004 .

[52]  H. Matsui,et al.  High resistance to helium embrittlement in reduced activation martensitic steels , 2002 .

[53]  Steven J. Zinkle,et al.  Vanadium alloys: overview and recent results , 2002 .

[54]  S. Jitsukawa,et al.  Ferritic/martensitic steels – overview of recent results , 2002 .

[55]  Hideharu Nakashima,et al.  Characterization of High Temperature Creep Properties in Recrystallized 12Cr-ODS Ferritic Steel Claddings , 2002 .

[56]  T. Okuda,et al.  Development of 9Cr-ODS Martensitic Steel Claddings for Fuel Pins by means of Ferrite to Austenite Phase Transformation , 2002 .

[57]  Ryuta Kasada,et al.  Annealing behavior of irradiation hardening and microstructure in helium-implanted reduced activation martensitic steel , 2000 .

[58]  H. Matsui,et al.  Irradiation hardening of reduced activation martensitic steels , 1996 .

[59]  H. Matsui,et al.  Neutron irradiation effects on the microstructure of low-activation ferritic alloys , 1994 .

[60]  M. Narui,et al.  Effects of alloying elements on the post-irradiation microstructure of 9%Cr-2%W low activation martensitic steels , 1992 .

[61]  Manabu Tamura,et al.  Development of potential low activation ferritic and austenitic steels , 1986 .

[62]  T. Mcnelley,et al.  Grain size and particle dispersion effects on the tensile behavior of friction stir welded MA956 oxide dispersion strengthened steel from low to elevated temperatures , 2014 .

[63]  D. Michel,et al.  Proceedings of the topical conference on ferritic alloys for use in nuclear energy technologies , 1984 .