Hybrid global matrix/local interaction simulation approach for wave propagation simulation in composite laminates

This paper presents a hybrid approach to model guided wave propagation in composite laminates. The global matrix approach is used to determine the displacement field surrounding a piezoelectric actuator. The displacement field is then enforced in a specified region of a numerical model that employs the local interaction simulation approach (LISA). This LISA Hybrid approach circumvents the problem of modeling non-rectangular actuators in the Cartesian discretization in LISA by using the global matrix method to characterize the actuator’s influence on a cut-out region surrounding it. Results show the LISA Hybrid model outperforms previous LISA models that enforce in-plane displacements on the surface of the plate. The LISA Hybrid model produces wave propagation time histories that closely match the baseline global matrix method and successfully capture directional effects resulting from the anisotropic nature of composite plates. Results for aluminum, cross-ply, unidirectional, and quasi-isotropic plates show dependence on the in-plane discretization size, but that dependence is less pronounced for the cross-ply case.

[1]  Douglas E. Adams,et al.  Modeling Guided Waves for Damage Identification in Isotropic and Orthotropic Plates Using a Local Interaction Simulation Approach , 2008 .

[2]  Bc Lee,et al.  Modelling of Lamb waves for damage detection in metallic structures: Part I. Wave propagation , 2003 .

[3]  Ajit K. Mal,et al.  On the accuracy of approximate plate theories for wave field calculations in composite laminates , 1995 .

[4]  M.J.S. Lowe,et al.  Matrix techniques for modeling ultrasonic waves in multilayered media , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[5]  A. H. Shah,et al.  Wave propagation in laminated composite plates , 1988 .

[6]  W. Staszewski,et al.  Modelling of Lamb waves for damage detection in metallic structures: Part II. Wave interactions with damage , 2003 .

[7]  J. Rose,et al.  Excitation of Guided Waves in Generally Anisotropic Layers Using Finite Sources , 1994 .

[8]  Carlos E. S. Cesnik,et al.  Modeling of Guided-wave Excitation by Finite-dimensional Piezoelectric Transducers in Composite Plates , 2007 .

[9]  Carlos E. S. Cesnik,et al.  Guided Wave Structural Health Monitoring Using CLoVER Transducers in Composite Plates , 2009 .

[10]  Bc Lee,et al.  Lamb wave propagation modelling for damage detection: I. Two-dimensional analysis , 2007 .

[11]  Sauvik Banerjee,et al.  Calculation of the Response of a Composite Plate to Localized Dynamic Surface Loads Using a New Wave Number Integral Method , 2005 .

[12]  Douglas E. Adams,et al.  Accuracy and Convergence Using a Local Interaction Simulation Approach in One, Two, and Three Dimensions , 2009 .

[13]  Carlos E. S. Cesnik,et al.  Characterization of guided-wave propagation in composite plates , 2010, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[14]  Ian P Bond,et al.  48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, USA , 2007 .

[15]  Carlos E. S. Cesnik,et al.  Simulation of Guided Wave Propagation in Isotropic and Composite Structures using LISA , 2012 .

[16]  Bc Lee,et al.  Lamb wave propagation modelling for damage detection: II. Damage monitoring strategy , 2007 .

[17]  Carlos E. S. Cesnik,et al.  Numerical simulation of wave propagation in composite plates , 2012, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[18]  Carlos E. S. Cesnik,et al.  Review of guided-wave structural health monitoring , 2007 .

[19]  Carlos E. S. Cesnik,et al.  Piezoelectric coupled LISA for guided wave generation and propagation , 2013, Smart Structures.

[20]  P. Delsanto,et al.  Connection machine simulation of ultrasonic wave propagation in materials. I: the one-dimensional case , 1997 .