Transcriptomic Profiling Using Next Generation Sequencing - Advances, Advantages, and Challenges

Transcriptome, the functional element of the genome, is comprised of different kinds of RNA molecules such as mRNA, miRNA, ncRNA, rRNA, and tRNA to name a few. Each of these RNA molecules plays a vital role in the physiological response, and understand‐ ing the regulation of these molecules is extremely critical for the better understanding of the functional genome. RNA Sequencing (RNASeq) is one of the latest techniques applied to study genome-wide transcriptome characterization and profiling using high-through‐ put sequenced data. As compared to array-based methods, RNASeq provides in-depth and more precise information on transcriptome characterization and quantification. Based upon availability of reference genome, transcriptome assembly can be referenceguided or de novo. Once transcripts are assembled, downstream analysis such as expres‐ sion profiling, gene ontology, and pathway enrichment analyses can give more insight into gene regulation. This chapter describes the significance of RNASeq study over arraybased traditional methods, approach to analyze RNASeq data, available methods and tools, challenges associated with the data analysis, application areas, some of the recent advancement made in the area of transcriptome study and its application.

[1]  Susan R. Wilson,et al.  Efficient experimental design and analysis strategies for the detection of differential expression using RNA-Sequencing , 2012, BMC Genomics.

[2]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[3]  Paul Flicek,et al.  Sense from sequence reads: methods for alignment and assembly , 2009, Nature Methods.

[4]  Gabor T. Marth,et al.  MOSAIK: A Hash-Based Algorithm for Accurate Next-Generation Sequencing Short-Read Mapping , 2013, PloS one.

[5]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[6]  May D. Wang,et al.  GoMiner: a resource for biological interpretation of genomic and proteomic data , 2003, Genome Biology.

[7]  Yi Jing,et al.  Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs , 2015, Proceedings of the National Academy of Sciences.

[8]  H. Ueda,et al.  Quartz-Seq : a highly reproducible and sensitive single-cell RNA-Seq reveals non-genetic gene expression heterogeneity , 2012 .

[9]  J. Manley,et al.  Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches , 2009, Nature Reviews Molecular Cell Biology.

[10]  Ronald C. Taylor An overview of the Hadoop/MapReduce/HBase framework and its current applications in bioinformatics , 2010, BMC Bioinformatics.

[11]  Milk yield responses to changes in milking frequency during early lactation are associated with coordinated and persistent changes in mammary gene expression , 2013, BMC Genomics.

[12]  Terence P. Speed,et al.  A comparison of normalization methods for high density oligonucleotide array data based on variance and bias , 2003, Bioinform..

[13]  X. Huang,et al.  CAP3: A DNA sequence assembly program. , 1999, Genome research.

[14]  S. Shabalina,et al.  The mammalian transcriptome and the function of non-coding DNA sequences , 2004, Genome Biology.

[15]  T. Hashimshony,et al.  CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. , 2012, Cell reports.

[16]  E. Meyerowitz,et al.  Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control , 2010, Molecular Systems Biology.

[17]  S. Luo,et al.  Global identification of microRNA–target RNA pairs by parallel analysis of RNA ends , 2008, Nature Biotechnology.

[18]  Julie Poulain,et al.  Overview of the functional virulent genome of the coffee leaf rust pathogen Hemileia vastatrix with an emphasis on early stages of infection , 2014, Front. Plant Sci..

[19]  J. Mattick,et al.  The extent of functionality in the human genome , 2013, The HUGO Journal.

[20]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[21]  J. Loor,et al.  Transcriptome profiles of whole blood in Italian Holstein and Italian Simmental lactating cows diverging for genetic merit for milk protein. , 2015, Journal of dairy science.

[22]  Joseph K. Pickrell,et al.  Understanding mechanisms underlying human gene expression variation with RNA sequencing , 2010, Nature.

[23]  Michael T. McManus,et al.  Research resource: RNA-Seq reveals unique features of the pancreatic β-cell transcriptome. , 2012, Molecular endocrinology.

[24]  David I. Smith,et al.  Tumor Transcriptome Sequencing Reveals Allelic Expression Imbalances Associated with Copy Number Alterations , 2010, PloS one.

[25]  G. Valacchi,et al.  Genes Related to Mitochondrial Functions, Protein Degradation, and Chromatin Folding Are Differentially Expressed in Lymphomonocytes of Rett Syndrome Patients , 2013, Mediators of inflammation.

[26]  Michal J. Okoniewski,et al.  Hybridization interactions between probesets in short oligo microarrays lead to spurious correlations , 2006, BMC Bioinformatics.

[27]  Hans Clevers,et al.  Single-cell messenger RNA sequencing reveals rare intestinal cell types , 2015, Nature.

[28]  A. Weber,et al.  RNA-Seq Assembly – Are We There Yet? , 2012, Front. Plant Sci..

[29]  J. Montoya-Burgos,et al.  Optimization of de novo transcriptome assembly from next-generation sequencing data. , 2010, Genome research.

[30]  Yudong D. He,et al.  A Gene-Expression Signature as a Predictor of Survival in Breast Cancer , 2002 .

[31]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[32]  Jian Wang,et al.  SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler , 2012, GigaScience.

[33]  X. Bian,et al.  Large-scale RNA-Seq Transcriptome Analysis of 4043 Cancers and 548 Normal Tissue Controls across 12 TCGA Cancer Types , 2015, Scientific Reports.

[34]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[36]  B. Haas,et al.  How deep is deep enough for RNA-Seq profiling of bacterial transcriptomes? , 2012, BMC Genomics.

[37]  Lucian Ilie,et al.  SHRiMP2: Sensitive yet Practical Short Read Mapping , 2011, Bioinform..

[38]  Xuegong Zhang,et al.  DEGseq: an R package for identifying differentially expressed genes from RNA-seq data , 2010, Bioinform..

[39]  De novo assembly and characterization of the garlic (Allium sativum) bud transcriptome by Illumina sequencing , 2012, Plant Cell Reports.

[40]  Caroline C. Friedel,et al.  A Comprehensive Evaluation of Alignment Algorithms in the Context of RNA-Seq , 2012, PloS one.

[41]  J. Leek svaseq: removing batch effects and other unwanted noise from sequencing data , 2014, bioRxiv.

[42]  Maureen L. Coleman,et al.  Microbial community gene expression in ocean surface waters , 2008, Proceedings of the National Academy of Sciences.

[43]  Chenhong Wang,et al.  RNA-Seq-Based Transcriptome Analysis of Changes in Gene Expression Linked to Human Pregnancy Outcome After In Vitro Fertilization–Embryo Transfer , 2016, Reproductive Sciences.

[44]  Sumio Sugano,et al.  The functional consequences of alternative promoter use in mammalian genomes. , 2008, Trends in genetics : TIG.

[45]  David M. Simcha,et al.  Tackling the widespread and critical impact of batch effects in high-throughput data , 2010, Nature Reviews Genetics.

[46]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[47]  Yutaka Sato,et al.  Genome-wide transcriptome dissection of the rice root system: implications for developmental and physiological functions. , 2012, The Plant journal : for cell and molecular biology.

[48]  J. Gilbert,et al.  Detection of Large Numbers of Novel Sequences in the Metatranscriptomes of Complex Marine Microbial Communities , 2008, PloS one.

[49]  M. Gerstein,et al.  FOXG1-Dependent Dysregulation of GABA/Glutamate Neuron Differentiation in Autism Spectrum Disorders , 2015, Cell.

[50]  Michael Q. Zhang,et al.  Updates to the RMAP short-read mapping software , 2009, Bioinform..

[51]  Vineet Bafna,et al.  Sensitive gene fusion detection using ambiguously mapping RNA-Seq read pairs , 2011, Bioinform..

[52]  Colin N. Dewey,et al.  RNA-Seq gene expression estimation with read mapping uncertainty , 2009, Bioinform..

[53]  Siu-Ming Yiu,et al.  IDBA-tran: a more robust de novo de Bruijn graph assembler for transcriptomes with uneven expression levels , 2013, Bioinform..

[54]  Miguel Pignatelli,et al.  Metatranscriptomic Approach to Analyze the Functional Human Gut Microbiota , 2011, PloS one.

[55]  Thomas J. Hardcastle,et al.  baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data , 2010, BMC Bioinformatics.

[56]  Dereje D. Jima,et al.  Deep sequencing of the small RNA transcriptome of normal and malignant human B cells identifies hundreds of novel microRNAs. , 2010, Blood.

[57]  L. AuerPaul,et al.  A Two-Stage Poisson Model for Testing RNA-Seq Data , 2011 .

[58]  P. Pevzner,et al.  An Eulerian path approach to DNA fragment assembly , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Ali Shojaie,et al.  Analysis of Gene Sets Based on the Underlying Regulatory Network , 2009, J. Comput. Biol..

[60]  P. Wincker,et al.  Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome , 2015, Genome Biology.

[61]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[62]  K. Piórkowska,et al.  Comprehensive analysis of the whole transcriptomes from two different pig breeds using RNA-Seq method. , 2014, Animal genetics.

[63]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[64]  Cutoffs and k-mers: implications from a transcriptome study in allopolyploid plants , 2012, BMC Genomics.

[65]  Jelle J. Goeman,et al.  A global test for groups of genes: testing association with a clinical outcome , 2004, Bioinform..

[66]  D. Geschwind,et al.  Transcriptome Profiling of Peripheral Blood in 22q11.2 Deletion Syndrome Reveals Functional Pathways Related to Psychosis and Autism Spectrum Disorder , 2015, PloS one.

[67]  Y. Xing,et al.  Detection of splice junctions from paired-end RNA-seq data by SpliceMap , 2010, Nucleic acids research.

[68]  M. Wilkins,et al.  Whole Transcriptome Sequencing Reveals Gene Expression and Splicing Differences in Brain Regions Affected by Alzheimer's Disease , 2011, PloS one.

[69]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[70]  A. Kochetov,et al.  Alternative translation start sites and hidden coding potential of eukaryotic mRNAs. , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[71]  S. Eddy Non–coding RNA genes and the modern RNA world , 2001, Nature Reviews Genetics.

[72]  C. Buell,et al.  Bioinformatics challenges in de novo transcriptome assembly using short read sequences in the absence of a reference genome sequence. , 2013, Natural product reports.

[73]  Siu-Ming Yiu,et al.  SOAP2: an improved ultrafast tool for short read alignment , 2009, Bioinform..

[74]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[75]  TieLiu Shi,et al.  Comparative study of de novo assembly and genome-guided assembly strategies for transcriptome reconstruction based on RNA-Seq , 2013, Science China Life Sciences.

[76]  D. Karolchik,et al.  The UCSC Genome Browser database: 2016 update , 2015, bioRxiv.

[77]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[78]  Javed Siddiqui,et al.  The use of exome capture RNA-seq for highly degraded RNA with application to clinical cancer sequencing , 2015, Genome research.

[79]  Cheng-Yan Kao,et al.  EBARDenovo: highly accurate de novo assembly of RNA-Seq with efficient chimera-detection , 2013, Bioinform..

[80]  Inho Park,et al.  Detection of a Distinctive Genomic Signature in Rhabdoid Glioblastoma, A Rare Disease Entity Identified by Whole Exome Sequencing and Whole Transcriptome Sequencing , 2015, Translational oncology.

[81]  S. Nelson,et al.  BFAST: An Alignment Tool for Large Scale Genome Resequencing , 2009, PloS one.

[82]  Xun Xu,et al.  SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads , 2013, Bioinform..

[83]  Yufei Huang,et al.  Differential expression analysis of RNA sequencing data by incorporating non-exonic mapped reads , 2015, bioRxiv.

[84]  E. Birney,et al.  Velvet: algorithms for de novo short read assembly using de Bruijn graphs. , 2008, Genome research.

[85]  Sandrine Dudoit,et al.  GC-Content Normalization for RNA-Seq Data , 2011, BMC Bioinformatics.

[86]  M. Robinson,et al.  A scaling normalization method for differential expression analysis of RNA-seq data , 2010, Genome Biology.

[87]  Shanrong Zhao,et al.  A comprehensive evaluation of ensembl, RefSeq, and UCSC annotations in the context of RNA-seq read mapping and gene quantification , 2015, BMC Genomics.

[88]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[89]  Jing Fan,et al.  Candidate Resistant Genes of Sand Pear (Pyrus pyrifolia Nakai) to Alternaria alternata Revealed by Transcriptome Sequencing , 2015, PloS one.

[90]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[91]  E. Bornberg-Bauer,et al.  Comprehensive transcriptome analysis of the highly complex Pisum sativum genome using next generation sequencing , 2011, BMC Genomics.

[92]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[93]  Nunzio D'Agostino,et al.  Comparative 454 pyrosequencing of transcripts from two olive genotypes during fruit development , 2009, BMC Genomics.

[94]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[95]  T. Sawbridge,et al.  De novo assembly and characterisation of the field pea transcriptome using RNA-Seq , 2015, BMC Genomics.

[96]  K. Reinert,et al.  RazerS--fast read mapping with sensitivity control. , 2009, Genome research.

[97]  M. McCarthy,et al.  Human β cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. , 2012, Cell metabolism.

[98]  Atul Sajjanhar,et al.  RNASeqBrowser: A genome browser for simultaneous visualization of raw strand specific RNAseq reads and UCSC genome browser custom tracks , 2015, BMC Genomics.

[99]  J. Weissman,et al.  Nascent transcript sequencing visualizes transcription at nucleotide resolution , 2011, Nature.

[100]  J. Zyprych-Walczak,et al.  The Impact of Normalization Methods on RNA-Seq Data Analysis , 2015, BioMed research international.

[101]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[102]  E. Shapiro,et al.  Single-cell sequencing-based technologies will revolutionize whole-organism science , 2013, Nature Reviews Genetics.

[103]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[104]  J. Yun,et al.  Identification of a 7-gene signature that predicts relapse and survival for early stage patients with cervical carcinoma , 2012, Medical Oncology.

[105]  A. Gómez,et al.  A 50-gene signature is a novel scoring system for tumor-infiltrating immune cells with strong correlation with clinical outcome of stage I/II non-small cell lung cancer , 2015, Clinical and Translational Oncology.

[106]  Qin Zhang,et al.  Transcriptional profiling of mammary gland in Holstein cows with extremely different milk protein and fat percentage using RNA sequencing , 2014, BMC Genomics.

[107]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[108]  Nuno A. Fonseca,et al.  Tools for mapping high-throughput sequencing data , 2012, Bioinform..

[109]  Charlotte Soneson,et al.  A comparison of methods for differential expression analysis of RNA-seq data , 2013, BMC Bioinformatics.

[110]  Christopher M. Player,et al.  Large-Scale Sequencing Reveals 21U-RNAs and Additional MicroRNAs and Endogenous siRNAs in C. elegans , 2006, Cell.

[111]  L. Lai,et al.  Transcriptome Analysis of Thermal Parthenogenesis of the Domesticated Silkworm , 2015, PloS one.

[112]  Stephen W. Hartley,et al.  DNA methylome and transcriptome sequencing in human ovarian granulosa cells links age-related changes in gene expression to gene body methylation and 3ʹ-end GC density , 2015, Oncotarget.

[113]  R. Durbin,et al.  Mapping Quality Scores Mapping Short Dna Sequencing Reads and Calling Variants Using P

, 2022 .

[114]  David G Hendrickson,et al.  Differential analysis of gene regulation at transcript resolution with RNA-seq , 2012, Nature Biotechnology.

[115]  Akhilesh K. Tyagi,et al.  De Novo Assembly of Chickpea Transcriptome Using Short Reads for Gene Discovery and Marker Identification , 2011, DNA research : an international journal for rapid publication of reports on genes and genomes.

[116]  Serban Nacu,et al.  Fast and SNP-tolerant detection of complex variants and splicing in short reads , 2010, Bioinform..

[117]  Süleyman Cenk Sahinalp,et al.  deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data , 2011, PLoS Comput. Biol..

[118]  M. Gerstein,et al.  The Transcriptional Landscape of the Yeast Genome Defined by RNA Sequencing , 2008, Science.

[119]  P. Khatri,et al.  Profiling gene expression using onto-express. , 2002, Genomics.

[120]  J. Maguire,et al.  Integrative analysis of the melanoma transcriptome. , 2010, Genome research.

[121]  M. Kiebler,et al.  Faculty Opinions recommendation of Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. , 2009 .

[122]  Zhong Wang,et al.  Next-generation transcriptome assembly , 2011, Nature Reviews Genetics.

[123]  R. Kream,et al.  Comparing Bioinformatic Gene Expression Profiling Methods: Microarray and RNA-Seq , 2014, Medical science monitor basic research.

[124]  B. Tian,et al.  Alternative cleavage and polyadenylation: the long and short of it. , 2013, Trends in biochemical sciences.

[125]  G. Sherlock,et al.  The prognostic role of a gene signature from tumorigenic breast-cancer cells. , 2007, The New England journal of medicine.

[126]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[127]  Xuegong Zhang,et al.  RNAseqViewer: visualization tool for RNA-Seq data , 2014, Bioinform..

[128]  Thomas Nussbaumer,et al.  RNASeqExpressionBrowser - a web interface to browse and visualize high-throughput expression data , 2014, Bioinform..

[129]  L. Steinmetz,et al.  Extensive transcriptional heterogeneity revealed by isoform profiling , 2013, Nature.

[130]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[131]  E. Jordanova,et al.  Whole-transcriptome analysis of flow-sorted cervical cancer samples reveals that B cell expressed TCL1A is correlated with improved survival , 2015, Oncotarget.

[132]  A. Saliba,et al.  Single-cell RNA-seq: advances and future challenges , 2014, Nucleic acids research.

[133]  M. Chapman Transcriptome sequencing and marker development for four underutilized legumes1 , 2015, Applications in plant sciences.

[134]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[135]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[136]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[137]  J. Harrow,et al.  Systematic evaluation of spliced alignment programs for RNA-seq data , 2013, Nature Methods.

[138]  M. Stephens,et al.  RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. , 2008, Genome research.

[139]  N. Friedman,et al.  Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data , 2011, Nature Biotechnology.

[140]  Nicolas Servant,et al.  A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis , 2013, Briefings Bioinform..

[141]  Rithy K. Roth,et al.  Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays , 2000, Nature Biotechnology.

[142]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[143]  Alexey A. Gurevich,et al.  QUAST: quality assessment tool for genome assemblies , 2013, Bioinform..

[144]  Mark J. Clement,et al.  The GNUMAP algorithm: unbiased probabilistic mapping of oligonucleotides from next-generation sequencing , 2010, Bioinform..

[145]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[146]  Ji Huang,et al.  [Serial analysis of gene expression]. , 2002, Yi chuan = Hereditas.

[147]  A. Oshlack,et al.  Transcript length bias in RNA-seq data confounds systems biology , 2009, Biology Direct.

[148]  Sandrine Dudoit,et al.  Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments , 2010, BMC Bioinformatics.

[149]  Martin Vingron,et al.  Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels , 2012, Bioinform..

[150]  C. Mason,et al.  Comprehensive evaluation of differential gene expression analysis methods for RNA-seq data , 2013, Genome Biology.

[151]  Steven C. Lawlor,et al.  GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways , 2002, Nature Genetics.

[152]  Lior Pachter,et al.  Identification of novel transcripts in annotated genomes using RNA-Seq , 2011, Bioinform..

[153]  Cole Trapnell,et al.  Computational methods for transcriptome annotation and quantification using RNA-seq , 2011, Nature Methods.

[154]  Tanya Vavouri,et al.  Tuning in to the signals: noncoding sequence conservation in vertebrate genomes. , 2008, Trends in genetics : TIG.

[155]  Leighton J. Core,et al.  Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters , 2008, Science.

[156]  T. Wetter,et al.  Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. , 2004, Genome research.

[157]  Robert A. Edwards,et al.  Quality control and preprocessing of metagenomic datasets , 2011, Bioinform..

[158]  Lin Liu,et al.  Comparison of Next-Generation Sequencing Systems , 2012, Journal of biomedicine & biotechnology.

[159]  Howard Y. Chang,et al.  Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. , 2011, Molecular cell.

[160]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[161]  M. Blignaut Review of Non-coding RNAs and the epigenetic regulation of gene expression , 2012, Epigenetics.

[162]  Berat Z. Haznedaroglu,et al.  Optimization of de novo transcriptome assembly from high-throughput short read sequencing data improves functional annotation for non-model organisms , 2012, BMC Bioinformatics.

[163]  Scott J Emrich,et al.  Assessing De Novo transcriptome assembly metrics for consistency and utility , 2013, BMC Genomics.

[164]  L. Tan,et al.  De Novo Assembly and Characterization of Fruit Transcriptome in Black Pepper (Piper nigrum) , 2015, PloS one.

[165]  C. Kai,et al.  CAGE: cap analysis of gene expression , 2006, Nature Methods.

[166]  Atul J. Butte,et al.  Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges , 2012, PLoS Comput. Biol..

[167]  Laura L. Elo,et al.  Comparison of software packages for detecting differential expression in RNA-seq studies , 2013, Briefings Bioinform..

[168]  Anders Krogh,et al.  Bayesian transcriptome assembly , 2014, Genome Biology.

[169]  Pavel A Pevzner,et al.  How to apply de Bruijn graphs to genome assembly. , 2011, Nature biotechnology.

[170]  Marcel H. Schulz,et al.  A Global View of Gene Activity and Alternative Splicing by Deep Sequencing of the Human Transcriptome , 2008, Science.

[171]  Thomas Tuschl,et al.  Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. , 2008, Methods.

[172]  Pooja Mittal,et al.  A novel signaling pathway impact analysis , 2009, Bioinform..

[173]  J. Mudge,et al.  Comparisons of De Novo Transcriptome Assemblers in Diploid and Polyploid Species Using Peanut (Arachis spp.) RNA-Seq Data , 2014, PloS one.

[174]  Y. Benjamini,et al.  Summarizing and correcting the GC content bias in high-throughput sequencing , 2012, Nucleic acids research.

[175]  Daniel H. Huson,et al.  Simultaneous Assessment of Soil Microbial Community Structure and Function through Analysis of the Meta-Transcriptome , 2008, PloS one.

[176]  Derek Y. Chiang,et al.  MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery , 2010, Nucleic acids research.